A Queue-Based Genetic Algorithm (QGA)

Asanobu KITAMOTO
Research and Development Department
National Center for Science Information Systems (NACSIS)
3-29-1, Otsuka, Bunkyo-ku, Tokyo 112-8640, JAPAN
TEL: +81-3-3942-8590 FAX: +81-3-5395-7064
E-mail: kitamoto@rd.nacsis.ac.jp

Abstract

This paper proposes a novel GA called “a queue-based genetic algorithm.” This algorithm is unique
in that the data structure of the population is based on a first-in-first-out queue, and it is the key idea
to realize asynchronous structure of the algorithm. This algorithm is in particular developed in relation
to interactive evolutionary computation (IEC) framework, and the characteristics of QGA comes from the
solution to the problem of IEC framework. Various novel genetic operations is developed, and some of them
are analyzed in a quantitative manner. Finally QGA is compared with SGA in terms of royal road test
function, and behavior of the algorithm is illustrated in terms of population and fitness.

1 INTRODUCTION

Traditional genetic algorithms (GA) [1, 2] is based on a generation model, which, in practice, is used in the
form of two extremes; namely a model that replaces the entire population at once (traditional GA) and that
replaces only a small portion (usually less than a few individuals) of the population (steady-state GA). In this
paper, the author proposes another new type of GA whose generational model is fundamentally different from
those ones stated above, namely a non-generational model where all the individuals in the populations are
maintained in a set of queues.

In fact, this idea is not totally new; a similar idea was already proposed by De Jong et al.[3] in relation to
a steady-state GA. Instead of uniform random deletion scheme, they proposed an alternate deletion scheme
called FIFO deletion to reduce the expected variance of growth curves. The advantage of FIFO deletion is
that the variance in individual lifetimes is reduced to zero, and the implementation of GA is as simple as a
first-in-first-out queue with new individuals added to one end and deleted individuals removed from other end.
However, to the author’s knowledge, the usage of a queue as a population model was not investigated so far.
The fixed size population model has been popular for a long period.

However, the author’s interest in a queue comes from his interest in the interactive evolutionary computation
(IEC) framework. Here the IEC framework is a kind of human computer interaction mechanism to take user’s
preference into systems through the interactive optimization of system parameters (structures) by means of
evolutionary computation algorithms. Interactivity in this case refers to the idea of relating relevance feedback
given by a user to the fitness of individuals. The author has been working in this research field, and realized
that asynchronous operations and rapid convergence becomes important issues [4]. To meet such requirements,
a queue is a suitable data structure to maintain the population because of the reasons described later. Hence
a new genetic algorithm proposed in this paper is called a queue-based genetic algorithm (QGA), although it
should be emphasized that the QGA is not a specialized algorithm for IEC applications.

In the QGA, a FIFO queue is used to represent a structured population model instead of a flat population
model by an array. Furthermore, the application of a queue requires a new type of algorithmic techniques
on genetic operations, such as selection, reproduction, crossover and mutation. This paper mainly deals with
issues on the population of individuals, not on issues on individuals, such as representation (binary / real
coding, diploidy, ...)!, bit-string recombination, and so on. The comparison of QGA with traditional GA is
presented later to demonstrate the capability of QGA.

IHereafter I use binary coding (gray coding) representation not to invite too much complexities in the paper, in spite of my
preference for real coding on function optimization problems.

Rel evance
Feedbac

suy 11106 |y 2 110UD

Figure 1: A schematic diagram of interactive evolutionary computation (IEC) framework.

2 BASIC MODEL OF QGA

2.1 Interactive Evolutionary Computation

Now let me briefly introduce the background and motivation to reach the idea of QGA. As addressed in the
Introduction, the motivation of developing QGA comes from the author’s interest in IEC framework, which
refers to a human computer interaction system utilizing evolutionary computation framework to introduce the
adaptive behavior of the system. In some systems, the model of user’s preference or user’s subjectivity play an
important role, however in those cases it is extremely difficult or impossible to express the evaluation function
of problems being considered. One good example is the aesthetic evaluation of computer generated images
based on user’s preference. Since human beings are especially good at visual task compared to computers, the
recognition of beautiful images, or a rough assignment of evaluation scores to images based on some criteria
is something human beings should do. On the contrary, a computer is extremely good at computation. Then
the role of a computer is to accept relevance feedback given by a user, extract information from relevance
information, and determine what to do next to best meet user’s preference. Such complimentary relationship
between human begins and computers leads to a mutual system such as IEC framework.

Thus this research area is attracting more and more attention recently. One of the early works is a “biomorph
system” by Dawkins [5], in which patterns that look like creatures are evolved using mutation operations. The
application of IEC framework to computer graphics are further investigated by Sims [6]. Another impressive
application of IEC framework is on criminology [7]; others are evolvable line drawings [8], knowledge discovery
[9], and so on. The author also has been working in this area to construct an interactive image browsing system
based on a QGA [10, 4].

However, although traditional GAs can be applied to those applications, the author thinks that we need
more convenient algorithm that solves problems addressed below.

2.1.1 Raw fitness value is imprecise

The schematic diagram of TEC is illustrated in Figure 1. System parameters or structures are coded in the
genotype of each individual, and the genotype generates the phenotype which serves as the target of evaluation
by a user. In turn, a user gives relevance feedback to each target, and this relevance feedback is fed back to
genetic algorithm in which evaluation scores are related to the fitness of individuals. However, the fitness value,
in this case, is actually not a precise value, since the result of relevance feedback is “subjective” in nature. We
should not expect that, even if relevance feedback is given on semi-continuous scale in the interval, say [0, 100],
the raw evaluation score of relevance feedback is imprecise as it seems to be. In some cases, relevance feedback
is given through questions like “please rate this target on five point scale,” where evaluation score is given in a
discrete value. It may be more convenient for a user to answer such questions like “which one you like better,”
by comparing two targets. In this case, the evaluation score is given only in the order of preference.

The evaluation score thus obtained is next related to the fitness of each individual. However, as we addressed
above, we should again be aware that the raw evaluation score may be a nonliear approximation of the true
value, so the fitness of individual also becomes an approximate value. Hence the absolute magnitude of fitness
is of less importance; rather the relative order of fitness values is important. Content-based selection scheme,
which will be later proposed in this paper, will remove this effect to some degree.

2.1.2 Reducing waiting time is important

Another unique issue in IEC framework is that “waiting time” plays an important role. Unlike usual evolu-
tionary algorithms, the characteristic point of IEC framework is that a human user gets involved in the cycle
of evolutionary algorithms. This involvement introduces two problems in terms of waiting time as follows.

’S_G'?“M—FO‘—ORO fitness

S- Queue
enot yp
Repr oduction 'O"O_’O Genot ype

W Queue

Crossover| nutation Genotype-

OAO Phenot ype

O O O Generation

L- Queue

Figure 2: A schematic diagram of a queue-based genetic algorithm.

Waiting time for a human user A human user is required to wait until a computer finishes the generation
of phenotype from genotype, because a human user gives relevance feedback on phenotype not on genotype. This
generation stage sometimes requires intensive computation cost; however long waiting time invites discomfort
in user interface.

Waiting time for a computer A computer (processor) is required to wait until a human user finishes
relevance feedback to targets. Even if a human user can give evaluation scores at a glance, it requires at least a
second or so. If a human user need to scrutinize given targets, then it requires much more time; however long
waiting time brings the deterioration of computational efficiency because of the idling period of processors.

2.2 Overview of QGA

To solve the problem of mismatch in waiting time, one promising approach is to reconfigure evolutionary
algorithms into an asynchronous version, where modules for a human user and for a computer can overlap to
allow simultaneously processing like a pipeline processing of CPU. The introduction of a queue is a natural
solution to this problem as illustrated in Figure 2. Here all individuals are maintained in a queue, and all
modules can be processed simultaneously. If it is possible to remove any synchronization points and reconfigure
the algorithm so that it does not require any global information on the population, then this algorithm can be
easily extended to asynchronous version of GA. The characteristics of QGA can be summarized as follows:

1. Selection is based on a contest-based FIFO selection and after selection all individuals are categorized
into either winners or losers.

2. In reproduction, winners have more than one offspring, while losers, less than one offspring. Selective
pressure is called by two parameters.

3. In crossover, different probability is assigned for multiple types of crossover. Since the queue of winners
and the queue of losers are maintained in QGA, different type of crossover plays a different role.

Thus the main data structure in QGA is a queue. Hereafter the author will explain in more detail the
genetic operations proposed in this paper.

2.3 Selection

The selection operator in QGA can be called “contest-based FIFO selection.” Individuals waiting for selection
operation is maintained by a queue called “S-Queue (SQ).” The selection operator picks up two individuals at
the head of the SQ, and compares their fitness. Then the individual with larger fitness is named as a “winner,”
while the other, a “loser.” This selection scheme is similar to binary tournament selection in terms of fitness
comparison between two individuals. However, in contrast to probabilistic selection scheme of tournament
selection, all individuals are always picked up for selection in contest-based FIFO selection.

The advantage of this scheme is that it does not require any global information on the population. Except
for tournamet selection schemes, traditional selection schemes require global information on the population such
as the average fitness of the population, which information is required in proportionate selection schemes, or the
ranking of each individual in the population, which information is required in ranking-based schemes; however
among traditional schemes. The author conjectures that selection schemes relying on global information is not
only inappropriate for asynchronous operation, but also inappropriate in terms of biology; instead selection
schemes based on local interaction between individuals should be a more natural formulation. In the selection
scheme used in the paper, selection is done by the local comparison of two individuals; therefore as soon as
two individuals appear in the SQ, selection schemes can be immediately started.

Another advantage, which is a natural consequence of characteristics stated above, is that this selection
scheme does not require any scaling or ranking techniques. In practice, choosing appropriate scaling or ranking

techniques is an important research issue to achieve good performance; however there appear to be no theoretical
framework for choosing appropriate schemes for a particular problem [3]. Thus the removal of scaling or ranking
techniques is advantageous in terms of the reduction of complexity in GA. However, this merit is obtained at
the sacrifice of discarding information on absolute fitness value. This scheme may sound to be ineffective, but
Whitley states as “however in many real applications the evaluation function is likely to be a heuristic that
simply indicates which strings are better than others. In most cases it may not be realistic to use the value
generated by the evaluation function to judge relative differences in fitness.” [11] Following this argument, this
scheme may not be effective as it sounds to be. Moreover, as explained in Section 2.1.1, raw fitness values are
not precise in IEC applications.

Finally let me briefly describe the quantitative analysis of this contest-based selection. Let the current
population size (the number of individuals in the population) be N, and the current ranking of the individual
be S. Then the probability of this individual being a winner s and a loser ¢ can be simply represented as:

s = S/N
t = (N=-S)/N=1-5 (1)

where it is assumed that the competitor is randomly selected from the population. Equation (1) shows that a
winner is not always an individual with “above average” performance. An individual with high performance
has a high chance of being a winner, but an individual with low performance also has a chance of being a
winner in a low-level contest.

2.4 Reproduction

Unlike traditional GAs, fitness proportionate reproduction scheme cannot be applied to QGA because of
the reasons addressed above. Instead, to bias sampling toward better performing structures, the following
reproduction schemes is proposed.

e Assign two offsprings to a winner with probability p,, > 0, otherwise assign one offspring.
e Assign zero offspring to a loser with probability p; > 0, otherwise assign one offspring.

As a result, the expected number of offspring for a winner N,, and a loser IN; can be calculated as:

Ny, = 1+4+p
Nl =]-_pw (2)

In this scheme, the number of offsprings for each individual is restricted to integer value, namely 0, 1 or 2.
However, the winner can produce at least one offspring, and at least a winner can survive in reproduction.
The offsprings of a winner and a loser are put at the tail of “winner-queue (WQ)” and “loser-queue (LQ)”
respectively.

Here, two parameters p,, and p; in Equation (2) have strong relationship with population size. If two
parameters are set to p,, = pi, expected population size (the length of queues) is constant; however, due to
the effect of stochastic processes, actual population size for a specific GA run fluctuates (random walks) along
time, even if parameters are set to p,, = p;. Moreover, expected population size grows monotonically over time
when p,, > p;. Population size in QGA is therefore not constant. This nature characterizes QGA from many
other traditional GAs, and a queue is a very effective data structure to manage variable population size. In
consequence, population size in QGA is implicitly expressed as the length of a queue.

Moreover, two parameters are also related to selective pressure. High p, and p; values quickly delete
out losers and increase winners in the population; which might result in premature convergence. Thus the
appropriate settings of two parameters are important issues in this scheme to keep optimal selective pressure,
or optimal balance between exploration and exploitation.

Now, it is time to have a brief quantitative analysis on two parameters above. Combining Equation (1) and
Equation (2) yields the expected number of offsprings O of an individual with the rank S as follows:

O = s(1+py)+t(l—p)
= 1+ spy, —tpy (3)
= (put+p)s+1—p (4)

From Equation (3), it is clear that if sp,, > tp;, the expected number of offsprings is more than one. In other
words, the number of offspring is exactly equal to one if

b
St =)
th Pw + b ()

4

unless p, = p; = 0. This shows that if the rank of an individual is above this threshold sy, then this
individual is expected to increase in the next reproduction. Another important point Equation (4) shows is
that O increases monotonically with s; hence high performance individuals are expected to have more offsprings.

Further development of Equation (4) in the framework of schema may lead to a variant of well-known
“Schema Theorem” [1], but this development is left for future works.

2.5 Crossover

Crossover is a bit-string recombination operator also in QGA. However crossover has another important role;
that is, by assigning high priority to crossover that involves WQ, crossover also serves as another operator to
to increase or decrease selective pressure. In this scheme, a winner not only increases the number of copies in
the population through reproduction, but also enjoys a “short” lifetime in the sense that it is expected to have
a high change of experiencing more genetic operations, and achieve faster feedback of their genetic material to
the population.

To realize such selective pressure, three types of crossover is proposed with probability C;:

Type 1 Crossover within WQ (prob. Cy)
Type 2 Crossover between WQ and LQ (prob. Cs)
Type 3 Crossover within LQ (prob. C3)

where a set of probability satisfies the following equation:

Zci =1 (6)

In crossover stage, each crossover operator is selected in accordance with probability assigned to each crossover
type.

Here mating is also a FIFO-based mating?. Then in crossover of Type 1 and Type 3, an individual at
the head of each queue is first selected, and another individual is searched along the queue to find the first
individual that has different genotype from the head. On the other hand, in crossover of Type 2, an individual
at the head of WQ is first selected, and another individual in LQ is searched in the same manner.

Now relationship between parameters appeared in reproduction and crossover becomes another interesting
issue. For the optimal assignment of crossover probabilities for winners, those probabilities should be set so
that the offsprings produced from a winner at the reproduction stage is all consumed in crossover stage. Then
we can have the following equation:

Ny =1+4+p, =20, +Cs (7)

where the coefficient “2” with C; is necessary since in Type 1 crossover two individuals are involved. Referring
to Equation (6), we can determine parameter values if we set a value to one of three parameters. Perhaps the
most interesting parameter is Cs, since it controls the degree of mixing between winners and losers. If we set
C5, other parameters can be obtained with the following equations.

1+ py, —C
C, = # (8)
Cs = 1-C1—Cy (9)

The recombination of bit-strings can be done in any ways, such as one-point crossover, two-point crossover,
uniform crossover, and so on. The selection of appropriate recombination operator is independent of the overall
structure of QGA.

2.6 Mutation

The same argument like above applies to the mutation operator. Any mutation schemes proposed so far can also
be applied to QGA. However, the biggest difference of QGA is that you can set different mutation probabilities
to different crossover types. For example, a crossover within WQ deserves low mutation probability because it is
a recombination of promising genes. On the contrary a crossover within LQ deserves high mutation probability
to explore search space. Hence in QGA, mutation probability M; is associated to each crossover type.

— T
Evaluation GPList | Genotype + Phenotype
Module
I genotype
(Subjective) { L
Evaluation ! l_f phenotype
by Human \ i
z I.’ genotype
g /A henotype i
E j /| _phenotyp
Check | 2 ! i’ i’ genotype
|_:|] i/ |
I N — - - i j’ _fl ',-’ phenotype
Genetic) P P
Operators selection g 1 7] genotype
Tournament n il 4 -
g fil/ 7| phenotype
z Winner f i PP
s - oser 5 Genotype
° W-Queue /I L-Queue ;—j/, s -
- Artos genotype
X e LI a
crossover il S phenotype
Elitist G List oy
i N -
Population I"l/ Formation
4 A Servers
mutation Dispatcher |

Figure 3: Extended model of QGA used for image browsing.

3 EXTENDED MODEL OF QGA

3.1 Elite Population

The basic structure of QGA is explained thus far. However, the author has several ideas on the extension of
QGA. One extension is the introduction of another fixed-size population called “elite population.” The role
of this population is to maintain individuals with particularly high performance. An insertion scheme such as
keeping the best individuals found so far is closely related to a population model used in GENITOR algorithm
[11] or CHC algorithm [12]. In the framework of QGA, queue-based populations keep diversity, while elite
population keep individuals that could guide the search to promising search areas.

3.1.1 Insertion into Elite Population
There should be many variants of insertion schemes other than keeping best individuals, and now an insertion
scheme that focuses on niching is proposed as follows.

1. Define the size of the elite population.

2. Fill this array-based population by randomly generated initial individuals in queue-based populations.

3. A winner is compared to one of individuals in the elite population which is closest to the winner. Com-
pare fitness between two individuals, and if newly appeared individual has high fitness, then replace an
individual in the elite population with a winner.

4. If distance between arbitrary two individuals in the elite population is below threshold D;, then leave
the higher individual and remove the lower one to make make a room for a new comer. Goto 3.

This simple insertion scheme for niching addressed above is similar to the voronoi tessellation of the search
space with the representation point being updated based on the algorithm above. Although this algorithm is
relatively prone to be captured in local optimal, and one parameter D; is critical in this algorithm in spite of
lacking practical method to estimate an appropriate value.

3.1.2 New Types of Crossover

After the introduction of the elite population, it is natural to add two types of crossover in the list such as the
following.

Type 4 Crossover between Elite and WQ (prob. Cy)
Type 5 Crossover between Elite and LQ (prob. C5)

where the following equation is satisfied:

Y ci=1 (10)

i=1

20ther schemes such as incest prevention mating or niching can also be implemented.

In these crossovers, one of two offsprings produced from crossover is appended at the tail of an appropriate
queue. The introduction of this crossover hopefully speeds up convergence guided by individuals stored in the
elite population. In this case, Equation (7) can be rewrited as

Ny =14p, =2C1 +Co+Cy (11)

Since the degree of freedom is three, we have to determine three parameters among five parameters. Again
C5 controls the degree of mixing between winners and losers. Perhaps more interesting parameters are Cy and
Cs. The role of these crossovers are to inject promising genetic material into queue-based population. If Cy
and Cj are set to a higher value, then these crossovers have a strong effect on directing search areas. That
is because these crossovers have an effect on the whole population in the same way as having many copies
in the population. In other words, we can think of a “virtual population” in which the percentage of Cjy is
the copies of elite population. It can be achieved without actually having many copies in the population,
instead having another population that preserves good individuals. In short, new types of crossover works
like a “crossover-frequency-controlled selection mechanism,” although this idea requires rigorous experimental
validation.

Thus the setting of C4 of C5 is important to control the convergence and diversity of populations. In
particular Cy is the probability of combining an elite with a individual in WQ, expectedly an individual with
high performance, so this combination may succeed in local search around optimum points, or may fail in
premature convergence.

3.2 Parallelism

Parallel GA has been an active research area with the purpose of, for example, achieving fast computation
time, evolving spatially structured population, simulating mutual reaction between individuals or populations.
Asynchronous configuration of QGA is also an advantageous trait in parallel GA. QGA does not require global
information nor global synchronization points, so the extension to parallel QGA is straightforward. Paralleized
QGA will be useful in two ways.

Overlapped Modules The first parallel version is a solution to the problem addressed in Section 2.1.2.
To reduce waiting time for both a human user and a computer, one solution is to overlap modules so that
modules for a human user such as evaluation module, and modules for a computer such as genetic operations,
can overlap and work simultaneously like a pipeline processing of CPU. This is not a parallel GA in a usual
sense, but this is an important direction in IEC framework.

Multiple (Sub)Populations Another version is much more typical in GA research. Although the author
still did not test this type of parallel GA, the extension of QGA to this type of parallel GA is natural and
straightforward. By treating QGA as a module that serves as a (sub)population, and connect multiple QGA
to form parallelized QGA. This is a promising area of research, but remains as a future work.

4 Experimental Results

4.1 Royal Road Experiments
4.1.1 Parameter Setting

The first test functions used in this paper are royal road (RR) functions. For the detail of the function, readers
should refer to [13, 14]. These test functions are advantageous because these functions are rather simple
and well studied. Among RR functions, R1, R2, R2,,; was used. The parameters used in QGA refers to
the parameters used in [13], namely the length of bit-string = 64 (K = 8, N = 8), population size = 128,
single-point crossover, sigma scaling with maximum fitness 1.5, crossover probability 0.7, mutation probability
m = 0.005 per bit.

In QGA, initial population size was also 128, but after that population size fluctuated because of the effect
of stochastic process. Another consideration is the counterpart of sigma scaling. As stated above, QGA does
not use any scaling mechanism. However, Equation (4) shows that mostly best performing individual has the
expected offsprings of 1 4+ p,,(s = 1), and mostly worst performing individual, 1 — p;(s = 0). Then parameter
values p, = p; = 0.5 is expected to have a similar effect on the convergence speed as sigma scaling used in
[13]. Crossover probability for each crossover type is set to C2 = 0.4. Mutation probability for each crossover
type is set to M7 = 0.0, My = bm, M3 = 10m. M, and M3 has relatively high mutation rate, but M; is zero
probability of mutation; namely Type 1 crossover is not affected by mutation.

Table 1: The number of mean and median function evaluations taken to find the optimum over 200 runs on
test functions.

RI | R2 | R2jm
SGA Mean [13] | 62099 | 73563 | 62692
SGA Median [13] | 56576 | 66304 | 56448

QGA Mean 33796 | 79010 | 61427
QGA Median 27680 | 52484 | 43124
so| BestFimess | o
100] |
N e — J
n 0 ‘ %\‘v L
< % 3 | u”ﬁlm ﬁh. “(‘: wbw‘}’pi‘ m
s -
< i . » mv}:“‘;\\“!‘; ‘ﬂw | e i A]ML‘[
2 AT A :
g ’”’AV’é’r’égfé"if{tﬁé's'é """""
!’
0 O
0 | 10000 20000 0 10000 20000
Function Evaluations Function Evaluations
(a) Behavior of Population (b) Behavior of Fitness

Figure 4: Behavior of population and fitness of QGA.

4.1.2 Results

First, Table 1 gives the mean and median function evaluations taken to find the optimum over 200 runs on
each function. Since I cannot assure that the experiments are carried out on the same ground, it is difficult to
compare directly these results, but QGA seems to be an effective algorithm for R1. The author is thinking of
more intensive comparison of two GAs.

Next a rough sketch on the behavior of QGA is presented in Figure 4. As stated before, the population
changes over time, and fluctuates like a random walk. However, this fluctuation is handled by the queue-based
population structure. The behavior of fitness is also shown in Figure 4. Average fitness is calculated as the
moving average of 128 individuals. It shows steady improvement of average fitness, and at the final stage, best
individual with fitness 64 was found, which terminated this GA run.

4.2 Computational Complexity

It requires more computation cost due to the management of data structures, especially queues. However, in
real problems, usually computation cost required for function evaluation becomes the most important part of
computational complexity [15, 14]. So I believe, although without quantitative evaluation, that the additional
computation cost required by the management of these data structures can be well compensated if this algorithm
can considerably reduce the number of function evaluation.

5 CONCLUSION

This paper proposed a novel GA called “a queue-based genetic algorithm.” This algorithm is unique in that
the data structure of the population is based on a first-in-first-out queue, and it is the key idea to realize
asynchronous structure of the algorithm. This algorithm is in particular developed in relation to interactive
evolutionary computation (IEC) framework, and the characteristics of QGA came from the solution to the
problem of TEC framework. Various novel genetic operations have developed, and some of them were analyzed

”

in a quantitative manner. Finally QGA was compared with SGA in terms of royal road test function, and
behavior of the algorithm was illustrated in terms of population and fitness.

There remains many topics for future works, including intensive comparison of QGA with other GA meth-

ods, adaptation of parameters during search, finding out better parameter settings, and extension of QGA into
several direction as addressed in Section 3.

References

1]
2]
3]
[4]

[5]
[6]
[7]

(10]

(1]

(12]

Holland, J.H. Adaptation in Natural and Artificial Systems. MIT Press, 1992.
Goldberg, D.E. Genetic Algorithms in Search, Optimization & Machine Learning. Addison-Wesley, 1989.

DeJong, K.A. and Sarma, J. Generation Gaps Revisited. In Whitley, L.D., editor, Foundations of Genetic Algo-
rithms 2, pp. 19-28. Morgan Kaufmann Publishers, 1993.

Kitamoto, A. and Takagi, M. Interactive Image Browsing Using Queue-Based Genetic Algorithm. The Journal of
the Japanese Society of Artificial Intelligence, Vol. 13, No. 5, pp. 728-738, 1998. (in Japanese).

Dawkins, R. The Blind Watchmaker. Longman, 1986.
Sims, K. Artificial Evolution for Computer Graphics. Computer Graphics, Vol. 25, No. 4,, 1991.

Caldwell, C. and Johnston, V.S. Tracking a Criminal Suspect through Face-Space with a Genetic Algorithm. In
Proc. of the Fourth International Conference on Genetic Algorithms, pp. 416-421, 1991.

Baker, E. Evolving Line Drawings. In Graphics Interface, 1994.

Venturini, G., Slimane, M., Morin, F., and Beauville, J.P. Asselinde. On Using Interactive Genetic Algorithms for
Knowledge Discovery in Databases. In Béack, T., editor, Proc. of the Seventh International Conference on Genetic
Algorithms, pp. 696-703. Morgan Kaufmann Publishers, 1997.

Kitamoto, A. and Takagi, M. Learning Criteria for Similarity-Based Image Retrieval Using Simulated Breeding by
Pipeline-Type Genetic Algorithms. Technical Report of the Institute of Electronics, Information and Communica-
tion Engineers, Vol. HIP96-4, pp. 17-22, 1996. (in Japanese).

Whitley, D. The GENITOR Algorithm and Selection Pressure: Why Rank-Based Allocation of Reproductive Trials
is Best. In Shaffer, J.D., editor, Proc. of the Third International Conference on Genetic Algorithms, pp. 116-121.
Morgan Kaufmann Publishers, 1989.

Eshelman, L.J. The CHC Adaptive Search Algorithm: How to Have Safe Search When Engaging in Nontraditional
Genetic Recombination. In Rawlins, G.J.E., editor, Foundations of Genetic Algorithms, pp. 265-283. Morgan
Kaufmann, 1991.

Forrest, S. and Mitchell, M. Relative Building-Block Fitness and the Building-Block Hypothesis. In Whitley, L.D.,
editor, Foundations of Genetic Algorithms 2, pp. 109-126. Morgan Kaufmann Publishers, 1993.

Mitchell, M. An Introduction to Genetic Algorithms. The MIT Press, 1996.
Davis, L. Handbook of Genetic Algorithms. Van Nostrand Reinhold, 1990.

