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Abstract

This paper proposes the fractional component analysis
(FCA), whose goal is to decompose the observed signal into
component signals and recover their fractions. The unique-
ness of our idea in comparison with other similar meth-
ods is the concept of the virtual PDF (probability distri-
bution function) that models signal mixing on the sensor. In
this paper, we derive the virtual PDF based on positivity
constraint, unity constraint, and randomness assumption,
and we then build it into the mixture density model. In or-
der to learn parameters of this model from data using EM
(Expectation-Maximization) algorithm, the key point is to
derive the approximation of the virtual PDF using its cu-
mulants. Finally we illustrate experimental results on syn-
thetic data to show the unique decision boundary obtained
from our method.

1. Introduction

This paper aims to propose ”yet another” method for de-
composing the observed signal into unobservable compo-
nent signals. Our unique approach to this popular problem
is to assume two levels of signal mixing, namelyinstanta-
neous mixing anddensity mixing. The former type of mix-
ing leads to the concept of thevirtual PDF, while the latter
leads to a popular mixture density model to be solved by a
variant of EM algorithm [4]. All of the procedures are de-
veloped based on probabilistic models and statistical learn-
ing.

Our motivation behind this method is the problem ofsig-
nal unmixing, a popular problem in the remote sensing com-
munity. Researchers in the field are always frustrated by the
presence of heterogeneous pixels that may contain multiple
endmembers (components) within a single pixel, and they
want to estimate components contained in a pixel with their
fractions. Here it is important to have in mind that signal
mixing depends on how we observe the real world, or, more
specifically, on the resolution of the sensor.

We begin with the model of instantaneous mixing in Sec-
tion 2 and the notion of the virtual PDF. Then we proceed to
the model of density mixing in Section 3, in which we intro-
duce thefractional component analysis (FCA) and discuss

learning issues. Finally in Section 4, we illustrate experi-
mental results and compare our method with similar ones.

2. Instantaneous Mixing

2.1. The Basic Model and Prerequisites

We start our discussion withinstantaneous mixing,
which refers to signal mixing at a single observation in-
stance. For the time being, we are interested in the estima-
tion of a set of components involved in a particular obser-
vation instance, and also component fractions. We assume
that component fractions are ”sparse” (most of the compo-
nent fractions are zero) in the sense that only a few compo-
nents are usually involved in instantaneous mixing at a sin-
gle observation instance. An observation instance may even
be ”pure”, where only a single component is observed with-
out signal mixing. We therefore pursue a generative model
capable of generating mixed signals from the combination
of pure component signals.

Due to the limited space of the paper, we only consider
a linear model for instantaneous mixing as follows:

x(t) =
M∑

m=1

am(t)sm(t) + n(t) = S (t)a(t) + n(t). (1)

where the observation signal at a sample indext, x(t) ∈
RN , consists of the linear combination of two types of la-
tent variables; namely, pure component signalssm(t) ∈
RN weighted by the component fraction,a(t) ∈ RM ,
wheream(t) ∈ F = {ai(t)|ai(t) > 0 and

∑M
i=1 ai(t) =

1, for ∀t}, defined for each componentC m ∈ C =
{C1, . . . ,CM}. In a matrix notation,S (t) ∈ RN×M represents
an observation instance ofM component signals inN obser-
vation channels, such as multi-spectral images. In addition,
n(t) ∈ RN is a random vector that usually describes addi-
tive noise. Here, we are interested in the special setting of
Eq. (1) with the following prerequisites.

1. Positivity constraint am(t) > 0 for ∀m,∀t

2. Unity constraint
∑M

m=1 am(t) = 1 for ∀t

3. Randomness assumption am(t) andsm(t) are realiza-
tions of random variablesAm andSm.
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Figure 1. A graphical representation for in-
stantaneous mixing of three components.
Note that component fractions Ai are not in-
dependent because of the unity constraint.
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Figure 2. A graphical representation for the
density mixing. ’P’ and ’M’ denotes a pure
and a mixed observation, respectively.

Figure 1 illustrates the graphical representation of instan-
taneous mixing. We assume that 1) all of the latent variables
– component signals and component fractions – are random
variables, 2) component signals are mutually independent,
and 3) the component fraction and the component signal is
independent. Component fractions, however, are notinde-
pendent because of the unity constraint.

2.2. Virtual PDF

We assume that instantaneous mixing occurs at each ob-
servation instance with the different combination of com-
ponents, as illustrated in Figure 2. Now, suppose that we
collect only observation instances generated from the in-
stantaneous mixing of the same components. Then it is nat-
ural to assume the PDF for this set of observations, or the
PDF of mixed signals. We call this PDF thevirtual PDF in
the sense that this PDF does not have a counterpart in the
real world; or in other words, it is like avirtual image that
appears as a result of signal mixing that occurs through the
sensor. Hence, we cannot reach this PDF by simply search-
ing for components existing in the real world.

To examine the virtual PDF, we first define a set of com-
ponentsC = {C1, . . . ,CM} that appear in the whole obser-

vation instances, and represents the random variable of the
i-th component asS i and its PDFS i ∼ pi(si|Φi), whereΦi

is the parameter vector. We then consider a subset ofC to
represent every possible signal mixing that may occur from
C. For example, a subset of size 2 is defined as

Ω2 = {ω(2)
(i, j) = ω

(2)
k |Ci ∈ C,C j ∈ C, i � j}, (2)

for k = 1, . . . ,
(

M
2

)
. In the same way, we may define subsets

Ωi, (i = 2, · · · ,M) with
(

M
i

)
elements.

We next represent the PDF of signal mixingω(M)
k . With-

out loss of generality, we may re-number component indices
asω(M)

k = {C1, . . . ,CM}. Then we obtain the PDFp(x|ω(M)
k )

as a marginal distribution over component fractionsa:

p(x|ω(M)
k ) =

∫
p(x, a|ω(M)

k )da =
∫

p(x|a, ω(M)
k )p(a)da, (3)

wherep(a) is the prior of component fractions. To simplify
the notation, we hereafter dropω (M)

k . We then focus on the
p(x|a) term in Eq. (3). Putting Eq. (1) yields

p(x|a) = p(a1s1 + · · · + aMsM |a) = p(s1, . . . , sM |a) (4)

in which we omit the noise termn for brevity, although it
can be naturally incorporated into our model. Independence
assumptions as represented in Figure 1 further lead to

p(x|a) =
1

a1 · · · aM
p1

(
s1

a1

)
∗ · · · ∗ pM

(
sM

aM

)
, (5)

where∗ denotes convolution. Note that we havea i > 0
because, in subset selection, only the components involved
in signal mixing are selected. Now, a convenient tool to
work with convolution is the characteristic function (CF)
ϕ(w) =

∫
e jwT x p(x)dx, wherej is an imaginary number and

the superscriptT denotes the transpose. Then we can sim-
plify the CFϕX|A(w) of PDF p(x|a) as

ϕX|A(w) =
1

a1 · · · aM

M∏
m=1

amϕm(amw) =
M∏

m=1

ϕm(amw). (6)

Finally, we can derivep(x|a) from Eq. (6) by the inversion
formula p(x|a) = 1

(2π)N

∫
w e− jwT xϕX|A(w)dw, and we reach

p(x) after the marginalization of Eq. (3).
We can thus compute the PDF of mixed signals for any

combination of components, provided that we can explicitly
represent both the PDF of each component and the prior of
component fractions. In addition, although this computa-
tion is theoretically possible, above procedure requires pro-
hibitively high computational complexity in practice.

3. Density Mixing

3.1. Mixture Density Modeling

Having derived the virtual PDF, we then develop a model
for density mixing. Figure 2 suggests that the observation
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Figure 3. The moments m(k)
X of order k of the virtual PDF in the case of one-dimensional signals.

m � n � o � p represents that none of them take equal values, and (θ)n = θ(θ + 1) · · · (θ + n).

signal is in fact composed of pure signals and mixed signals.
Intuitively, this idea can be written as follows;

Mixture Model= Real PDFs+ Virtual PDFs (7)

where ”Real PDFs” correspond to a traditional mixture
models. Formally, we represent our mixture density model
p(x|Φ,Θ) corresponding to Eq. (7) as follows:

p(x|Φ,Θ) =
M∑

l=1

πl pl(x|Φl) +
|Ωl |∑
ω(l)

k ∈Ωl

πω(l)
k

pω(l)
k

(x|Φ,Θ),

M∑
l=1

πl +

M∑
l=2

|Ωl |∑
ω(l)

k ∈Ωl

πω(l)
k
= 1, (8)

whereΦ are parameters of component distributions,Θ are
parameters related to instantaneous mixing, andπ (l)

ωk
repre-

sents mixing parameters in density mixing. This mixture
density model is the central model infractional component
analysis (FCA), and the problem here is to learn those pa-
rameters and related latent variables from data.

For that purpose, we exploit EM algorithm [4], which is
the standard algorithm for mixture density estimation. One
advantage of EM algorithm for the exponential family of
distributions is that parameter update rules can be factorized
component-wise, which leads to computationally attractive
algorithm. Our model, however, cannot take the full advan-
tage of EM algorithm because of the following obstacles.

1. We cannot obtain a closed-form solution for the virtual
PDF in general. Moreover, numerical integration in-
volved in the computation of the virtual PDF is some-
times computationally prohibitive.

2. We cannot obtain component-wise rules for parameter
updates because of the dependency of the virtual PDF
on multiple components as illustrated in Figure 1.

3.2. Approximation of the Virtual PDF

To solve the first obstacle, we derive the approximation
of the virtual PDF using its cumulants. The key point is to
apply moment expansion to both sides of Eq. (3) to yield

m(l1,...,lN )
X =

∫
F

p(a|Θ)m(l1,...,lN )
X|A da. (9)

This shows that the moments of the virtual PDFm (l1,...,lN )
X

can be computed from the priorp(a|Θ) and the moments of
p(x|a) of the same orderm (l1,...,lN )

X|A , which is usually much

easier to compute thanm(l1,...,lN )
X .

To take advantage of this property, we introduce the para-
metric family of PDFs with realistic descriptive power and
mathematical tractability:

pm(x|Φm) =
1

(2π)N/2|Σm|1/2 e−
1
2 (x−µm)TΣ−1

m (x−µm) (10)

p(a|Θ) =
Γ
(∑M

m=1 θm
)

∏M
m=1 Γ (θm)

M∏
m=1

aθm−1
m (11)

That is, we introduce the normal distributionN(µm,Σm) as
the model of component signalspm(x|Φm), and the Dirich-
let distribution as the model of component fractionsp(a|Θ).
We choose those families of distributions because of both
mathematical reasons and empirical justification [2].

With these settings, we can derive the moments and cu-
mulants in a closed form. Due to the limited space, we only
summarize analytically derived moments in Figure 3, from
which we can easily derive cumulants using such relation-

ship asc(1)
X = m(1)

X andc(2)
X = m(2)

X − m(1)
X m(1)

X

T
. These cumu-

lants are then required for approximating the virtual PDF
with Gram-Charlier expansion [1]. Basically it concerns a
deviation from the normal distributionN(c (1)

X , c
(2)
X ) having

the same mean vector and covariance matrix.



3.3. EM Algorithm for Our Mixture Density Model

For the second problem, due to the dependency of the
virtual PDF on multiple components, simultaneous maxi-
mization, or at least simultaneous improvement, of all pa-
rameters is required. In so doing, however, many of the
advantages in using EM algorithm would be lost. Hence
we ignore the interdependency of parameters over multi-
ple components, and apply conditional maximization steps
(conditional EM algorithm) [4] againstQ function.

E-step: MaximizeQ over the latent data parameters.

CM-step 1: Fix Φ(k),Θ(k), and arg maxQ(Π(k)).

CM-step 2: Fix Π(k+1), Θ(k), and arg maxQ(Φ(k)).

CM-step 3: Fix Π(k+1), Φ(k+1), and arg maxQ(Θ(k+1)).

The optimization of mixing parametersΠ (k) in CM-
step 1 follows the standard procedure, and it is applied to
both real PDFs and virtual PDFs. In CM-step 2, the param-
eters of real PDFs (normal distributions)Φ(k) are updated
following the standard procedure, then the cumulants of the
virtual PDF are updated automatically based onΦ (k+1) and
Figure 3. Finally, in CM-step 3, the parameters of the prior
Θ(k) are updated using a quasi-Newton method. However,
fixing Θ to values from simulation studies or other infer-
ences [3] often produces better results, since the optimiza-
tion of Θ(k) is difficult to control, and too smallθ ∼ 0 may
deteriorate the quality of Gram-Charlier approximation.

Finally, the result of mixture density estimation is used
for estimating component fractions at each observation in-
stance. We perform this task in a two-step procedure: 1) de-
termine a set of components involved in instantaneous mix-
ing, and 2) estimate component fractions given component
members. The first part is simply based on Bayes decision
rule, while the second part is based on MAP (Maximum A
Posteriori) estimate as follows.

a = arg max
a∈F

p(a|x) = arg max
a∈F

p(x|a)p(a) (12)

This maximization is performed using a kind of gradient
ascent algorithm. Another choice may be the Bayesian es-
timate using Monte Carlo methods.

4. Experiments and Discussions

Figure 4 shows the mixture density estimation and
Bayesian classification on synthetic signals inR2 as shown
in (a) with a gray-scale. This dataset is generated from
three component signals and mixed signals generated from
them (three 2-component and one 3-component mixed sig-
nals). Case (b), a traditional normal mixture density model,
found quadratic decision boundary, while Case (c) found
more complex decision boundary between pure components
(dark gray) and mixed components (light gray). In our
model, the virtual PDF is constrained by the real PDFs, thus

(a) Data (b) Real (3 PDFs) (c) Real (3 PDFs)
+ Virtual (4 PDFs)

Figure 4. Mixture density estimation and
Bayesian classification on synthetic data.

it decreases the effective complexity of the model compared
to a model with the same number of components.

Spectral unmixing problem has long been studied in the
remote sensing community, in which the most popular ap-
proaches are based on linear algebra, such as generalized in-
verse matrix or constrained least-squares regression. They,
however, often lack principled mechanisms to deal with un-
certainty, such as probability models. They do use neural
networks or fuzzy clustering to deal with uncertainty, but
we believe the fractional component analysis (FCA) is an
alternative principled approach which is based on probabil-
ity models and learning mechanisms.

Our model also has a strong connection to independent
component analysis (ICA) [1], because our model also as-
sumes mutual independence between component signals.
In particular, work by Parra et. al. [5] approaches a simi-
lar problem with similar prerequisites using ICA. However,
they do not formulate their model as a generative one based
on a clear distinction between pure and mixed signals.

Our current method is based on the learning of PDF over
the whole signal, but it should focus more on localized in-
stantaneous mixing. This is especially true for images, in
which signal mixing occur only at a spatially localized re-
gions. Hence our important future work is to incorporate lo-
calized or contextual information into the probability model
using Markov random field or its variants.
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