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http://codh.rois.ac.jp/


Humanities Data
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ROIS-DS Center for Open Data in 
the Humanities (CODH)

2016 Pre-center started.
2017 Officially launched.
Member: One director and four 
project researchers (NII and ISM).
Direction 1: Innovate humanities 
research by computer science and 
statistical technologies and tools.
Direction 2: Innovate non-
humanities research by data and 
questions from humanities.
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Our team consists 
of 1 professor, 4 
post-docs, and 5 
appointed 
professors.



CODH Datasets
http://codh.rois.ac.jp/dataset/
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Dataset of Pre-Modern Japanese Text

Kuzushiji Dataset

Dataset of Edo Cooking Recipes

Bukan Complete Collection

Collection of Facial Expressions

Dataset of Historical Administrative Boundaries



How to Access Humanities Data?

Humanities data are mainly textual data, but 
visual and spatial data requires metadata and 
annotation to enable deep access to content.
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Images Photographs Maps Characters



Knowledge Representation

Interoperable metadata and 
Semantic Web can increase 
findability.
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https://search.datacite.org/

DataCite - DOI

Google Dataset Search 
– Schema.org

https://toolbox.google.com/datasetsearch



Manual Image Annotation
https://tropy.org/
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Machine Learning (ML)
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Credit: David Stanley, 
https://www.flickr.com/photos/davidstanleytravel/

Gray: Human 
annotated tags, 
White: Machine 
annotated tags. 



Machine Learning for 
Photographic Database

2018/11/15 DSWS 2018 9



Best Practices for 
AI-assisted Data Curation

1. What could be done by AI, and not by AI? 
Hype and criticism should be corrected.  

2. Machine learning: especially effective for 
learning patterns from image data.

3. Images, especially photographs: selected as 
the initial target of the work.  

4. General numerical datasets: content-based 
access is still a challenge. 
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Open Images Dataset V2
https://github.com/openimages/dataset/blob/master/READMEV2.md
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Annotated images from the Open Images dataset. Left: FAMILY MAKING A SNOWMAN 
by mwvchamber. Right: STANZA STUDENTI.S.S. ANNUNZIATA by ersupalermo. Both 
images used under CC BY 2.0 license.



https://medium.com/@siddharthdas_32104/cnns-architectures-lenet-alexnet-vgg-
googlenet-resnet-and-more-666091488df5

Deep Learning Model

1. ResNet 101 classifier learns 5000 tags from 
9 million images (Open Images Dataset V2). 

2. We used the model already trained on 
general photographs, not on our dataset. 
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Case 1: Ethnology Field Work

1. Field work in Ghana, in 
August 2017.

2. About 3,700 
photographs, yet to be 
released to the public.

3. Collaboration with 
National Museum of 
Ethnology (Prof. 
Yoshida, Prof. Iida and 
others).
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Tag: Person
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Tag: Food
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Tag: Beer
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Tag: Art
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Case 2: Archaeology Field Work
http://dsr.nii.ac.jp/photograph/

1. Photographs of the 
Silk Road, mainly 
about old ruins.

2. 6,129 photographs 
across long time span.

3. Many photographs 
were taken by Dr. 
Nishimura in Toyo 
University.
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Tag: Archaeological Site
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Tag: Snow
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Tag: Wood
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Different Responses from Users
Ethnology 
Field Work

Image tagging has 
great potential for 
grouping photographs 
by theme.
Even if the tag is not 
correct, it gives some 
hints about the 
content. 

Archaeology 
Field Work

Grouping by machine-
generated tags is less 
useful than grouping 
by entity names.
Some tags are simply 
wrong due to 
different training 
images and domains. 
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Why Different Reponses?
General Noun 

Metadata
Ethnology 
photographs are so 
diverse that tags of 
general nouns are 
effective for grouping.
It motivates experts 
to describe deeper 
metadata.  

Proper Noun 
Metadata

Archaeology 
photographs are 
usually taken with 
intentions.
Entity names are 
difficult to identify by 
machine learning. 
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Case 3: Post-Disaster Survey 

1. Photographs of East 
Japan Earthquake 2011 
and Kumamoto 
Earthquake 2016. 

2. More than 10,000 
photographs, yet to be 
released to the public.

3. Collaboration with 
National Research 
Institute for Earth 
Science and Disaster 
Resilience (NIED).
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Serendipity
Tag: Stadium
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Semantic Grouping of Low-Level 
Tags

Domain experts 
need higher-level 
semantic 
grouping of low-
level tags. 
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Case 4: Historical Photographs
http://codh.rois.ac.jp/north-china-railway/

1. Photographs of 
North China Railway, 
a company existed 
around 1940.  

2. More than 35,000 
photographs will be 
released in Feb. 
2019.

3. Collaboration with 
Kyoto University. 
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Image Tagging 

Road, Street, Black-
and-white, 
Monochrome 
photography, 
Monochrome, 
Infrastructure, 
Transport, Lane, 
Vehicle, Photograph
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Image Colorization
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Image Tagging after Colorization

Road, Street, 
Infrastructure, Town, 
Transport, 
Photograph, Urban 
area, Vehicle, Lane, 
Pedestrian
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Lessons from Two Collections

1. Two photographic collections are too large 
for humans to annotate one by one. 

2. Automatic tagging may be useful as the 
initial step for improving findability.

3. Statistical research questions, such as 
thematic distribution may be answered.

4. Other methods can improve findability,  
such as colorization and object detection. 
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The Value of Data and 
FAIR Principle
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The Value of Data
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1. Intrinsic Value
Raw data
scientists / scholars

2. Basic Value
Organized data
(data) librarians

3. Added Value
Integrated data
(data) curators

4. Persistent Value
Preserved data 
(data) archivists



Machine Learning for Increasing 
the Value of Data

1. Basic value and added value need high 
quality metadata for higher value. 

2. FAIR (Findable, Accessible, Interoperable, 
Reusable) principle asks for good metadata.

3. Humans procrastinate in adding metadata, 
hence the workflow does not start. 

4. Use machines to quickly reach a state 
which is better than nothing.
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Digital Catalyst
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https://commons.wikimedia.org/wiki/File:CatalysisScheme.png

To reach a state of 
curated data, we 
need to go beyond 
the high energy 
barrier. 
Machine learning 
as digital catalyst 
reduces the barrier, 
requiring less 
human motivation
to pass the barrier.



Human-Machine Collaborative 
Workflow

1. Machines can automatically add general 
noun tags for coarse grouping.

2. Humans can manually add proper noun 
tags for fine meaning as metadata. 

3. Domain experts can add high-level 
metadata and semantic grouping.  

4. ML models can use added metadata as 
new training data to improve performance. 
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Conclusion

1. Machine learning, e.g. image tagging, is 
beneficial for improving findability.

2. General nouns are useful for some apps;
other apps require higher level metadata.

3. Better findability (curation) increases the 
basic value and added value of data.

4. Digital catalyst is a concept of machine-
assisted data curation to motivate humans.
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Acknowledgment and Links 

• Center for Open Data 
in the Humanities

• http://codh.rois.ac.jp/

• Open Science
• http://agora.ex.nii.ac.j

p/~kitamoto/research
/open-science/

• Researchmap
• http://researchmap.jp

/kitamoto/
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Photograph collections were provided 
from the following collaborators: 

Dr. Taku Iida in National Museum of 
Ethnology

Dr. Yoko Nishimura in Toyo University

Ms. Hinako Suzuki in National Research 
Institute for Earth Science and Disaster 
Resilience

Dr. Toshihiko Kishi and his colleagues in 
Kyoto University.

A part of the machine learning 
workflow was developed by:

Hoàng Văn, Hà (Vietnam National 
University, HCMC) during NII internship.

http://codh.rois.ac.jp/
http://agora.ex.nii.ac.jp/%7Ekitamoto/research/open-science/
http://researchmap.jp/kitamoto/
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