
2001 年情報論的学習理論ワークショップ
2001 Workshop on Information-Based Induction Sciences
(IBIS2001)
Tokyo, Japan, July 30 - August 1, 2001.

FCA: The Fractional Component Analysis

KITAMOTO Asanobu∗

Abstract: The goal of the “Fractional component analysis” proposed in this paper is to analyze the

observed signal generated by the linear mixing process of unknown fractional component signals.

Based on simple assumptions on the probability distributions of component signals and mixing

fractions, we derive a new type of distribution, which we call “mixed distribution,” and characterize

this model in terms of moments and cumulants. Its higher-order cumulants indicate that it is in fact

either super-gaussian or sub-gaussian even if the distribution of component signals are gaussian.

Finally we show methods for recovering fractional components from the observed signal.

Keywords: fractional component analysis, linear mixing process, mixed distribution, higher-order

statistics, mixture density estimation

1 Introduction
This paper describes the “fractional component analy-

sis”, whose goal is to solve the inverse problem of recov-

ering the fraction of component signals when the mixing

of component signals is unknown. To solve this problem, a

simple linear mixing process is assumed as the basic model:

x(t) = A(t)s(t) + ε(t), (1)

where x(t), A(t), s(t) and ε(t) denotes a N-dimensional row

vector called data vector, a (N,M)-dimensional matrix called

component matrix, and a M-dimensional row vector called

mixing vector, and a noise vector at index t, respectively.

Here N dimensions of signals indicate N data channels that

observe the same spatio-temporal location.

Although similar “linear mixing process” is widely in-

vestigated by many researchers, the uniqueness of our prob-

lem lies in the “fractional constraints.” Namely, we solve

Equation (1) under the constraints that the elements of the

mixing vector si(t) must satisfy the following fractional con-

straints,

1. Positivity Constraint si(t) > 0 for all i and t,

2. Unity Constraint
∑M

i si(t) = 1 for every t.

These constraints are necessary for si(t) to represent the

fraction of the component class Ci at index t. Here, in a

physical sense, this fraction may represent, for example, the

amplitude fraction of a signal, the area fractional coverage

of a pixel, the volume fractional coverage of a voxel, at the

spatio-temporal location of instantaneous observation.
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2 Background

2.1 Mixed Pixel Analysis

One of the real world applications behind this problem is

the “mixed pixel analysis” in image analysis [1, 2]. Mixed

pixels, or mixels, are present especially on remote sensing

images or medical images because of the following two

reasons. Firstly, the finite resolution of the sensor causes

mixed pixels composed of neighboring objects. For ex-

ample, the fractal boundary of clouds produce mixed pix-

els composed of clouds and ocean, lands. Another type of

mixed pixels is caused by semi-transparency of objects. For

example, thin clouds produce mixed pixels composed of

clouds themselves and objects behind. We claim that sta-

tistical properties of those heterogeneous pixels are totally

different from conventional ones and hence we need to es-

tablish appropriate mathematical models to deal with them

in a proper manner.

There have been numerous algorithms proposed for solv-

ing this problem. One simple approach assumes that A(t) is

a constant matrix for all t, neglects the noise vector ε(t),

then uses the Moore-Penrose generalized inverse matrix A+

to solve directly as s(t) = A+x(t). However, this solution

does not guarantee s(t) to satisfy the fractional constraints,

hence sometimes additional approaches such as Lagrange

multiplier or regularization are used together. Other ap-

proaches, such as fuzzy-based methods or subspace-based

methods, do give fractional scalar values for component

fractions, but those approaches tend to lack mathematically

sound interpretation of the obtained fraction. Recently pro-

posed non-negative matrix factorization (NMF) [3] can also
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Figure 1: Schematic diagram of the activity function.
decompose the set of observations into non-negative fac-

tors, but its goal is to produce sparse representation of the

signal, which is not required in our problem.

2.2 Blind Source Separation

Our problem may look similar to the blind source sep-

aration (BSS) problem. There is a widely known method

called independent component analysis (ICA) for solving

this problem [4]. ICA is a signal processing method to ex-

tract independent sources given only observed data that are

mixtures of the unknown sources. Thus our problem shares

some common features with BSS problem, but there are in

fact also differences as follows:

The first difference lies in the formulation of Equation (1);

in our problem it is the product of a component matrix and

a mixing vector, not the product of a mixing matrix and a

source vector as in BSS problem. This is because our goal

is to obtain the set of fractions that satisfy the fractional

constraints, and a mixing vector are more compact repre-

sentation for fractions than a mixing matrix.

The second difference is that the linear mixing process

is localized. In other words, linear mixing process varies

for every index t, not only in terms of the value of fractions

but also in terms of the number of fractional components

involved in linear mixing. This assumption leads to the no-

tion of activity function, as we address in the next section.

2.3 Activity Function

The assumption that the activity of each component is

localized implies that component signals are active during

small parts of the whole signal and remains silent for other

parts. Then we can conceptually classify the observed sig-

nal into two types of signals; namely pure signals and mixed

signals. Pure signals correspond to the case that only one

component signal is active, while mixed signals, more than

two component signals are active. This is a natural assump-

tion in some image analysis problems, since each compo-

nent is present for some pixels but not present for all pixels.

Fig. 1 illustrates this idea by means of the notion of activity

function. Each component is active for some range of index

but not active for the whole signal. Pure signals, shown in

white at signal type, can be observed for some range of the

whole signal, and for other parts mixed signals, shown in

gray at signal type, are generated as two-component mixed

signals or three-component mixed signals.

Then we further advance this idea to assume that the

probability density function (PDF) of the observed signal

are the mixture of two types of distributions; namely pure

distributions for pure signals and mixed distributions for

mixed signals. Pure distributions and mixed distributions

can be estimated from appropriate signal type. Here, pure-

type distributions are widely used, while mixed-type distri-

butions are hardly known. Hence we need to characterize a

probability model behind mixed signals, and that model is

what we call the “mixed distribution.”

3 Mixed Distribution

3.1 Definition

This section starts with the more formal definitions of the

linear mixing process represented by Equation (1). Suppose

that we have a set of data vectors x(t) = (x1(t), . . . , xN(t)),

(t = 1, . . . , T ) with N data channels, and this (mixed) data

vector is constituted of M component classes Cm, (m =

1, . . . ,M) with the fraction sm(t). Next we define the (N,M)

component matrix A(t) = (a1(t), . . . , am(t)) and its column

vector am(t) is a random vector that represents a component

signal from the component class Cm subject to the class-

conditional PDF pm(am|Cm;ψm). We then define the mix-

ing vector s = (s1, . . . , sM) ∈ S so that its m-th element

represents the fraction of the component class Cm at index

t, where the space of valid fractions S is

S =

(s1, . . . , sM)

∣∣∣∣∣∣∣si > 0,
M∑

i=1

si = 1

 . (2)

Note that the linear mixing of M components has only M−1

free parameters due to the fractional constraints, and we can

always set sM = 1 − ∑M−1
i=1 si. We denote the prior of the

mixing vector as f (s;Θ) with parameters Θ. Finally we de-

fine the “mixed distribution” as the PDF of the observed

mixed signal p(x) generated by linear mixing process in

Equation (1).

Before the derivation of the mixed distribution, here we

introduce characteristic function (CF) ϕx(w) of the random

variable x, which is defined as the Fourier transform of the

PDF p(x),

ϕ(w) = E
{
e jwT x

}
(3)

where j =
√−1 is the imaginary unit. Now we refer to



useful properties of the CF that will be used in the follow-

ing. Firstly, the CF of the random variable cx when c is a

constant can be represented as

ϕcx(w) = ϕx(cw). (4)

Secondly, suppose the sum of independent random vectors

x =
∑

i xi, and the CF of x is obtained by the product of all

CFs ϕxi (w) involved in the mixing,

ϕx(w;Ψ) =
∏

i

ϕxi (w;Ψi), (5)

where Ψi is the parameters of i-th random vector, and Ψ is

the parameters of x.

3.2 General Mixed Distribution

Another assumption required here is that the column vec-

tors of the component matrix are independent random vec-

tors, and in addition, the noise term are also assumed to be

independent random vectors. Then we can derive the CF

ϕx(w) of data vectors x. We first rewrite Equation (1) into

the sum of M terms:

x(t) = A(t)s(t) + ε(t) =
M∑

m=1

am(t)sm(t) + ε(t)

=

M∑
m=1

bm(t) + ε(t) (6)

where bm(t) = am(t)sm(t). Next, using the property of Equa-

tion (5), we represent the CF of data vectors with parame-

ters (Ψ,Θ);

ϕx(w;Ψ,Θ) =
M∏

m=1

ϕm(w;ψm,Θ)ϕε(w) (7)

The mixed distribution can then be derived in two steps.

The first step is to assume that the mixing vector s has con-

stant values, namely the mixing fractions are constant for

the whole signal. Applying Equation (4) to Equation (7)

yields the CF conditioned on the fixed mixing vector s:

ϕx(w|s;Ψ) =
M∏

m=1

ϕm(wsm;ψm)ϕε(w) (8)

The CF ϕx(w|s;Ψ) is usually invertible and we have ϕ−1(x|s;Ψ)

which is derived by the inverse Fourier transform;

ϕ−1(x|s;Ψ) =
1

2π

∫ ∞
−∞

e− jwT xϕx(w|s;Ψ)dw (9)

Note that the PDF ϕ−1(x|s;Ψ) cannot, in general, be repre-

sented in closed form using elementary functions except for

cases that all PDFs pm(·) belong to the same family of stable

distributions. However, at least in any cases, Equation (9)

can be computed numerically using FFT and numerical in-

tegration.

Mixing vectors, however, are in fact unknown and it is

natural (especially in image analysis) to assume that the

mixing vector is also a random vector distributed over the

space of any possible combination of fractions as defined in

Equation (2). According to this assumption, we randomize

Equation (9) with the prior of the mixing vector represented

by f (s;Θ) and obtain the PDF of p(x).

p(x;Ψ,Θ) =
∫

S
f (s;Θ)ϕ−1(x|s;Ψ)ds (10)

It is clear from above derivation that this general proce-

dures can deal with any types of probability models. How-

ever, if we manage to perform above procedures using nu-

merical algorithms, the computational cost is high while the

accuracy is low due to high dimensionality involved in the

computation. Thus we need a standard model which can

be easily computable and can be used to analyze essential

properties of this type of models. For this purpose, we pro-

pose the standard model of the mixed distribution.

3.3 Standard Mixed Distribution

The standard mixed distribution is composed of two types

of probability models, namely the model of component sig-

nals and the model of mixing. For the first model, we use

the normal distribution (gaussian) as the class-conditional

PDF of the component class Cm with parameters Ψm:

pm(x|Cm;Ψm) = N(x; µm,Σm)

=
e−

1
2 (x−µm)TΣ−1

m (x−µm)

(2π)N/2|Σm|1/2 . (11)

Here the CF of the normal distribution N(µm,Σm) can be

simply represented as follows.

ϕ(w) = e jwTµm− 1
2 wTΣmw (12)

For the second model, we use the Dirichlet distribution

as the prior of mixing vectors with parameters Θ:

f (s;Θ) =
Γ
(∑M

m=1 θm

)
∏M

m=1 Γ (θm)

M∏
m=1

sθm−1
m . (13)

Note that, this is the equation of M−1 dimensional Dirichlet

distribution because the M-th fraction sM can always be set

to sM = 1 − ∑M−1
m=1 sm. In addition, for later use, let θ =∑M

i=1 θi. If M = 2, one dimensional Dirichlet distribution is

called Beta distribution [2].



In the standard mixed distribution, Equation (8) can be

simplified because the normal distribution is a family of sta-

ble distributions. That is,

ϕx(w|s) =
M∏

m=1

ϕam (wsm)ϕε(w) (14)

= e[ jwT (∑M
m=1 smµm)− 1

2 wT (∑M
m=1 s2

mΣm+Σε)w] (15)

where the noise term is assumed to be gaussian N(0, Σε).

3.4 Statistics of Mixed Distribution

Now we are interested in characterizing the statistical

properties of the standard mixed distribution, and we specif-

ically focus on the moments and cumulants of the standard

mixed distribution in this paper, although provided that the

moments and cumulants do exist. For this purpose, the fol-

lowing power series expansion of the CF is useful:

ϕ(w) =
∞∑

l1,...,lN=0

j
∑N

i=1 li∏N
i=1 li!

Ml

N∏
i=1

wli
i , (16)

where Ml = M(l1,...,lN ) is the moment of order l =
∑N

i=1 li.

Conversely, the moment Ml can be calculated as follows:

Ml = (− j)l ∂lϕ(w)

∂wl1
1 · · · ∂wlN

N

∣∣∣∣∣∣∣
w1=···=wN=0

(17)

Following equations above, we derive the moments of the

PDF p(x;Ψ,Θ) with the power series expansion of ϕx(w).

If we apply Equation (3) to both sides of Equation (10),

and replace the CF with power series expansion as in Equa-

tion (16), we may obtain the following relation,

∞∑
l1,...,lN=0

j
∑N

i=1 li∏N
i=1 li!

Ml

N∏
i=1

wli
i

=

∫
S

∞∑
l1,...,lN=0

j
∑N

i=1 li∏N
i=1 li!

Rl(s;Ψ)
N∏

i=1

wli
i f (s;Θ)ds, (18)

where Rl(s;Ψ) is the moment of the PDF ϕ−1(x;Ψ). Com-

paring the terms of same order in both sides in Equation (18),

the simple formula is obtained for each l,

Ml =

∫
S

Rl(s;Ψ) f (s;Θ)ds. (19)

Note that these are moments about the origin, different from

central moments about the mean.

Central moments for order 1 and 2 are already obtained

for arbitrary N [5], but due to limited space, we focus on

the case of N = 1 in this paper and demonstrate procedures

for the first order moment l = 1. Firstly R1 can be derived

from Equation (15) and Equation (17),

R1 =
∂ϕx(w|s)
∂w

∣∣∣∣∣
w=0
=

M∑
m=1

smµm. (20)

Then this result is used in Equation (19) to give

M1 =

∫
S

R1 f (s;Θ)ds

=

M∑
m=1

µm

∫
S

Γ (θ)
M∏

m=1

Γ (θm)


M∏

n=1
n�m

sθn−1
n

 sθm
m ds

=

∑M
m=1 θmµm

θ
, (21)

where the class-conditional PDF pm(·) ∼ N(s; µi, σ
2
i ), the

noise term is omitted for clarity, and the following relation-

ship is used without proof [5],

∫
S

Γ (θ)∏M
m=1 Γ (θm)


M∏

n=1
n�m

sθn−1
n

 sθm−1+1
m ds =

θm

θ
. (22)

This procedure can easily extend to the second moment

case or higher-order moment cases and Fig. 2 illustrates up

to fourth order moments of the standard mixed distribution.

3.5 Experiments

∞∑
k=1

Mk

(k − 1)!
sk−1 =


∞∑

n=1

kn

(n − 1)!
sn−1



∑
l=0

∞Ml

l!
sl

 (29)

Gram-Charlier expansion

To verify equations in Fig. 2, we perform a simple sim-

ulation using random number generators. Comparison is

made on cumulants, not on moments, so the moments are

converted to cumulants using the following relationship,

k1 = M1 (30)

k2 = M2 − M2
1 (31)

k3 = M3 − 3M1M2 + 2M3
1 (32)

k4 = M4 − 4M3M1 − 3M2
2 + 12M2M2

1 − 6M4
1 (33)

We call these cumulants as theoretical cumulants kt
i . On the

other hand, we also define empirical cumulants ke
i that can

be calculated from simulated data as follows,

k1 = E[X] = µ (34)

k2 = E[(X − µ)2] = σ2 (35)

k3 = E[(X − µ)3] (36)

k4 = E[(X − µ)4] − 3σ4 (37)

Here µ and σ2 is the mean and the variance of a random

variable X. The purpose of the experiments is to compare

theoretical cumulants with empirical cumulants and evalu-

ate the magnitude of error between them. The brief descrip-

tion of the experiments follows.



R2 =


M∑

m=1

smµm


2

+


M∑

m=1

s2
mσ

2
m

 (23)

R3 =


M∑

m=1

smµm


3

+ 3


M∑

m=1

smµm




M∑
m=1

s2
mσ

2
m

 (24)

R4 =


M∑

m=1

smµm


4

+ 6


M∑

m=1

smµm


2 

M∑
m=1

s2
mσ

2
m

 + 3


M∑

m=1

s2
mσ

2
m


2

(25)

M2 =

M∑
m=1

θm(θm + 1)
(
µ2

m + σ
2
m

)
+

M∑
m,n=1
m�n

θmθnµnµm

θ(θ + 1)
(26)

M3 =

M∑
m=1

θm(θm + 1)(θm + 2)
(
µ3

m + 3µmσ
2
m

)
+

M∑
m,n=1
m�n

θmθn(θn + 1)
(
µmµ

2
n + 3µmσ

2
n

)
+

M∑
m,n,o=1
m�n�o

θmθnθoµmµnµo

θ(θ + 1)(θ + 2)
(27)

M4 =

M∑
m=1

θm(θm + 1)(θm + 2)(θm + 3)
(
µ4

m + 6µ2
mσ

2
m + 3σ4

m

)
+

M∑
m,n=1
m�n

θm(θm + 1)θn(θn + 1)
(
µ2

mµ
2
n + 6µ2

mσ
2
n + 3σ2

mσ
2
n

)

θ(θ + 1)(θ + 2)(θ + 3)
+

M∑
m,n=1
m�n

θmθn(θn + 1)(θn + 2)
(
µmµ

3
n + 6µmµnσ

2
n

)
+

M∑
m,n,o=1
m�n�o

θmθnθo(θo + 1)
(
µmµnµ

2
o + 6µmµnσ

2
o

)

θ(θ + 1)(θ + 2)(θ + 3)
+

M∑
m,n,o,p=1
m�n�o�p

θmθnθoθpµmµnµoµp

θ(θ + 1)(θ + 2)(θ + 3)
(28)

Figure 2: Moments of the standard mixed distribution for order 2, 3 and 4. Here m � n � o � p represents that none of

them are equivalent.

Table 1: Comparison between theoretical cumulants and

empirical cumulants.

M ki Average Median

M = 2

k1

k2

k3

k4

1.57 × 10−3

1.35 × 10−3

2.40 × 10−2

1.89 × 10−2

9.30 × 10−4

1.15 × 10−3

7.21 × 10−3

1.07 × 10−2

M = 10

k1

k2

k3

k4

1.14 × 10−3

1.30 × 10−3

2.61 × 10−2

1.61 × 10−2

8.53 × 10−4

1.17 × 10−3

1.69 × 10−2

1.13 × 10−2

1. The parameters of component distributionsΨ and mix-

ing distributions Θ are randomly generated.

2. The component matrix and the mixing vector are gen-

erated according to the normal distribution and the

Dirichlet distribution respectively using parameters

generated in 1, and a mixed random variable is com-

puted according to Equation (1).

3. This trial (2) is repeated for 1,000,000 times.

4. Then empirical cumulants are calculated for these tri-

als from equations Equation (34) to Equation (37).

5. At the same time, theoretical moments are calculated

from equations Equation (30) to Equation (33) using

randomly generated parameters in (1).

6. Evaluate the relative error ei = |kt
i − ke

i |/|kt
i | except for

the case |kt
i | ∼ 0.

7. Repeat a set of trials for 100 times with collecting

ei, and obtain the average and median of ei for the

cumulant of order i.

Then Table 1 shows the result. Our theoretical cumu-

lants demonstrate relatively small error for all cases. Er-

rors in higher-order cumulants tend to be larger, but we as-

sume that its reason may be the accumulation of error or

some bias in random number generators. Based on these

results, we can now verify that our theoretical cumulants of

the standard mixed distribution is correct.



3.6 Assumption on Mean Vectors

One interesting observation associated with moments de-

rived so far is the effect of mean vectors. If we assume that

all mean vectors are non-zero, then the number of terms in-

volved in Equation (28) is M4 + M3 + M2, which amounts

to 11100 terms for M = 10. However, if we assume that all

mean vectors are zero, then most of the terms are eliminated

and moments can be represented in a simpler form. More-

over, M1 and M3 becomes zero and hence k1 = k3 = 0 for

any σ2
i . But even in this case k4 � 0 and the mixed distri-

bution is super-gaussian or sub-gaussian dependent on σ2
i .

This result indicates a unique hypothesis that even if the

class-conditional PDFs of component classes are normal

distributions, the distribution associated with linear mixing

process is a super-gaussian or a sub-gaussian distributions

due to the variability of mixing fractions over the signal.

Assumption on mean vectors is also an important factor

in the estimation process, since the inverse problem of clas-

sifying those signals into either pure or mixed seems to be

intractable if all component signals are generated from the

PDFs with the same mean vector. Hence we assume that

mean vectors are different from class to class. This assump-

tion is theoretically not required, but in practice, it may be

helpful to classify the observed signal into pure or mixed

signals using cumulants. Furthermore, we should mention

that this is a natural assumption in image analysis, since

scalar values of image pixels represent unique spectral re-

flectance or emission from particular class.

4 Estimation

4.1 Density Estimation

Now the problem is to label each data vector x(t) as either

“pure” or “mixed” and one method for solving this problem

is to model the distribution of the observed data p(x) as a

finite mixture density, and regard the unknown label (pure /

mixed) as incomplete information that has to be estimated.

Then mixture density estimation based on EM algorithm is

applied to minimize the log-likelihood L(Ψ,Θ) of the ob-

served data,

L(Ψ,Θ) =
T∑

t=1

log p(x(t);Ψ,Θ), (38)

where (Ψ,Θ) are parameters involved in the finite mixture

density model. Note that we have two types of probabilis-

tic models in a finite mixture density, namely pure distri-

butions and mixed distributions. Some simple cases were

already shown in [1, 2], but these results were based on

the single modeling for the whole signal. Considering the

non-stationarity of the signal, a better strategy would be to

estimate cumulants for partial data and classify signals into

pure or mixed signals.

4.2 Fraction Estimation

We then estimate the fraction of each component based

on probability models, provided that we can now determine

which component classes are involved at index t from the

result of mixture density estimation. One convenient ap-

proach for estimate ŝ(t) is based on maximum likelihood,

ŝ(t) = max
s∈S

r(s|x(t)), (39)

where r(s|x(t)) is the PDF of s conditioned on the realization

of the observed vector x(t). Another more mathematical

approach is based on the expectation,

ŝ(t) = E{s|x(t)} =
∫

S
sr(s|x(t))ds. (40)

Comparing above two approaches, the former approach gives

lower computational complexity. Although the latter ap-

proach gives more robust estimate of the mixing vector, in

usual cases the difference of two approaches has only minor

impact on the final result.

5 Conclusion
The main result in this paper is the characterization of our

proposed probabilistic model called “mixed distribution.”

This distribution is characterized in terms of moments and

cumulants, which is subsequently verified by simple simu-

lation experiments, and it proposes a unique hypothesis that

even if component distributions are gaussian, the distribu-

tion after linear mixing process is either super-gaussian or

sub-gaussian because of the variability of mixing fractions.
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