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Abstract. The mixel is a heterogeneous pixel that contains multiple
constituents within a single pixel, and the statistical properties of a pop-
ulation of mixels can be characterized by the mixel distribution. Practi-
cally this model has a drawback that it cannot be represented in closed
form, and prohibitive numerical computation is required for mixture den-
sity estimation problem. Our discovery however shows that the “mo-
ments” of the mixel distribution can be derived in closed form, and this
solution brings about significant reduction of computation cost for mix-
ture density estimation after slightly modifying a typical algorithm. We
then show the experimental result on satellite imagery, and find out that
the modified algorithm runs more than 20 times faster than our previous
method, but suffers little deterioration in classification performance.

1 Introduction

The mixel, or the mixed pixel, is the “amalgam” of multiple constituents con-
tained within a single pixel. Because of the finite resolution of sensors we use
to observe the real world, a heterogeneous region, as well as a homogeneous re-
gion, is scanned as a single pixel. Hence we should regard the digital imagery
as the spatially quantized (sampled) representation of the real world, and take
for granted the presence of mixels. When the resolution of sensors is relatively
coarse to the scale of objects in the real world, for example in remote sensing or
medical images, the presence of mixels is usually inevitable.

To characterize the statistical properties of the mixels based on the prob-
ability theory, we can think of the probability distribution function (PDF) of
mixels, or the mixel distribution. It is basically a phantom distribution not cor-
responding to any objects in the real world, because the mixture of multiple
constituents takes place through the process of observation. The author insists
that this implicit distribution should be taken into account explicitly for the
statistical analysis of images. Our findings on the closed form moments of the
standard mixel distribution (SMD) then opens the way to the efficient compu-
tation of mixture density estimation including the SMD.

The organization of the paper is as follows. Firstly, Sect. 2 introduces related
works on mixels and also states several definitions. Secondly, Sect. 3 describes
main results of the paper, namely the closed form moments of the SMD. Then



Sect. 4 explains the mixture density estimation modified for the efficient com-
putation of the SMD. Next Sect. 5 illustrates experimental results on satellite
imagery, and finally Sect. 6 concludes the paper.

2 Mixel Models

Related Works. Past literature on mixels mainly focused on the estimation
of area proportions for each mixel from observed pixel values. Methods can be
grouped into several approaches; for instance, image geometry-based methods
[1], probability model-based methods [2, 3], fuzzy model-based methods [4, 5],
linear projection-based methods [6], and non-linear regression-based methods [7].
The approach used in this paper shares some motivation with the probability
model-based methods in that area proportions are estimated from parametric
PDF models of constituent classes. However, the most important distinction of
our method from those methods lies in the introduction of the mixel distribution.
This model has not been paid much attention, probably because this distribu-
tion is hidden, and affects only when the percentage of mixels is relatively high.
However, the mixel distribution shows interesting properties different from con-
ventional PDF models [8, 9, 10], and hence requires special treatment for its
efficient computation. Next we summarize definitions required afterwards.

Definition 1 (Linear Model of the Mixel). A “K -class mizel” is a pizel that
contains K number of constituent classes. Let the area proportion of constituent
class C; be a; € (0,1). From the definition of the area proportion, the sum of area
proportions for all constituent classes amounts to unity; namely Efil a; = 1.
Moreover let the radiation from class C; be a D-dimensional vector ;. Then we
hypothesize that the observed radiance of the mizel x is represented by the linear
combination of the radiance from the constituents. Neglecting the common noise
term for simplifying the argument, we have

K
T = Z a;x; . (1)
i=1

Definition 2 (Definition of the Mixel Distribution). From (1), it is clear
that the mizel distribution consists of two types of PDF models; namely a random
vector x; drawn from the PDF of constituent class C; represented by p(x;|Ci; ;)
with parameters ; € ¥, and another random vector a = (a1,...,ax—1) € A
drawn from the PDF of area proportions represented by f(a;¢), where A =
{(al, cey R —1)] Zfi}l a; < 1,a; > 0} is the space of area proportions, and ax =

1- Zfi}l a;. Then the “D-band K -class mizel distribution” can be derived from
K number of class-conditional D-dimensional multivariate PDF and one (K —1)-
dimensional multivariate PDF of area proportions [8].

Definition 3 (Definition of the SMD). The term “standard mizel distri-
bution” (SMD) is coined for representing a special mizel distribution derived



only from normal distributions (the PDF of constituent class) and the Beta dis-
tribution (the PDF of area proportions). Formally, the PDF of class C; is a
multivariate normal distribution:

1 1 1
p(x|Ci; i) = N(pi, Xs) = W €xXp {—5(33 - ,Ui)TEi (x — Hi)}(z),

where x is a D-dimensional column vector, p; is the D-dimensional mean vector,
X; is the D-by-D covariance matriz, (x—p;)T is the transpose of (x—ps), 3,1
is the inverse of X;, and | X;| is the determinant of X;. On the other hand, the
PDF of area proportions is the (K — 1)-dimensional Beta distribution:

K
Flaz ) = I'(pr+¢2+ -+ dK) Ha¢l_1 _ a1 3)

Hle(d) zll H11F¢lzl

where ¢ is a D-dimensional parameter vector with i-th component ¢; > 0 for all
i, p= Zfil ¢i, and I'(-) is the Gamma function.

3 Central Moments of the SMD

Derivation of the SMD. First we choose a certain fixed vector for area pro-
portions. Then (1) represents the linear combination of random vectors drawn
from normal distributions. Because the normal distribution is a stable distri-
bution, the mixel distribution also becomes the normal distribution with the
following parameters:

K K
Ma = Zaiui, Yo = Z a;%; , (4)
i—1 i1

If we further assume mutual independence between random vectors x; and the
random vector a, the randomization of N(ptq, Xs) with the a priori distribution
of area proportions yields the SMD M (x) as follows [8]:

//f N(ta, Xa)da . (5)

Central Moments of the SMD. Now we start to derive the moments of
the SMD (5). Unfortunately the SMD itself cannot be represented in closed
form because the integral involved in (5) cannot be solved. However, the central
moments, namely the mean vector and the covariance matrix can be calculated in
closed form, which is the main results of this paper. For the concise presentation
of the paper, we will describe the detailed proof in the Appendix.

Proposition 1. The mean vector ppg of the SMD is represented by:

K . .
paa = 25 ©
i=1 71



Proposition 2. The covariance matriz Xnr of the SMD is represented by:

YK 6ildi +1)Z; +{ZK il =0 g — YOI 1ZK S0 iy T }

> =
M= olp+1)

(7)

In practice, above equations are applied in simpler forms with smaller number

of dimensions and constituent classes. Hence we shall investigate several repre-

sentative cases for the one-band two-class SMD. In this case, the area proportion
distribution is equivalent to one-dimensional Beta distribution:

I'(¢1 + ¢2) at1
T ()"

where a; = a and as = 1 — a. Then the moments of the mixel distribution can
be derived from (6) and (7) with substituting p; — p;, and X; — o?.

fla;¢) = 1-a)®". (8)

wp = ﬁ (Ppr1p1 + pap2) 9)
02:¢w+nm+mm+nﬁ+£ﬁJm—mf (10)
M (61 + ¢2)(d1 + P2+ 1)

Ezample 1. The simplest SMD corresponds to the case when the PDF of con-
stituent class C; is the delta function p(z|C;) = d(z — p;), and the PDF of area
proportions is the uniform distribution ¢; = ¢5 = 1. This is a special case since
we can analytically solve (5) to obtain the closed form mixel distribution:

1
M2 — M1 ’
where po > py is assumed without losing generality. The mean and the variance
of this uniform distribution can be trivially calculated:

P+ e 1

M(a) = (11)

These results can also be obtained by substituting 0? = 03 =0 and ¢ = ¢ = 1
in (9) and (10), which shows this is a special form of the SMD.

Ezample 2. Let us consider more “practical” case when the PDF of constituent
class C; is a univariate normal distribution N (p;,0?), and the PDF of area
proportions is the uniform distribution. Substituting (9) and (10) with corre-
sponding parameters in this case, we obtain the moments as follows:

B+ 2 1
fv = =5 012\423(

od) s m) . (13)
Here the variance o3, consists of two terms; the first term represents the effect
of variance from constituent classes, while the second term is affected by the
distance between means. The latter is in particular unique in the mixel distribu-
tion, because it is not caused by the random noise, but caused by the mixture
of different constituents. This term also corresponds to (12).



Fig. 1 illustrates the shape of one-band two-class SMD for representative
five cases. In spite of different skewness and kurtosis of the SMD, all the SMDs
similarly extend between peaks of the constituent classes’ PDFs. On the other
hand, the right table summarizes the comparison between theoretically derived
moments (6), (7) and empirical moments calculated from the simulated data.
Consistency in this table intuitively verifies theoretical moments derived above.

4 Mixture Density Estimation by EM algorithm

Finite Mixture Density and EM algorithm. Image classification method
used in this paper is based on a typical algorithm; that is, 1) Estimate finite
mixture density from the statistics of the observed image, 2) Classify each pixel
based on Bayes decision rule. Here the mixture density model is as follows:

M
plalyp) = p|Ci,:)P(Cy) (14)

i=1

where M is the number of distributions, and P(C;) is the mixing parameter.
It should now be emphasized that in our model M includes both the class-
conditional PDF (normal distributions) and the SMD (not normal distributions).
Then the problem is to search for parameters in (14) that best describes the
statistics of the observed image.

One of the standard iterative algorithm for solving this problem is the EM
algorithm [11]. Conceptually this algorithm consists of two steps, namely E-step
and M-step. The update rules of parameters can be written as follows:

1 Y PYHC))p(xk|Ciyps")

N& o plaklyh) ’

N
PY(Ci)p(zk|Ci, i)
P = argmax > log p(ar|Ci, s ’
uag D o p(enl G ) —— )

where the superscript ¢ denotes ¢-th iteration. In addition, more efficient update
rules are available for parameters of the normal distribution;

1 _ {Z’“=1 Lk p(xw|9Y) } an
k=17 p@nly?)

N H(C)p(mr|Ciapst
{0 (e — )y — pugt )T LG )

k=1 FICER)

PH(Cy) = (15)

, (16)

= (18)

Approximation of the SMD. However, efficient update rules (17), (18) or
similar rules cannot be applied to the SMD because it is not a normal distribu-
tion nor cannot be represented in closed form. Numerical optimization (16) and



integral (5) requires heavy computation, so the incorporation of the SMD into
mixture density model (14) has not been a practical choice.

However, in this paper, the results on the moments of the SMD play an
important role in realizing efficient computation of mixture density estimation.
The idea we try is very simple. That is, to exploit efficient update rules (17) and
(18), we replace the SMD with the normal distribution N(uar, X'ar); in other
words, we approximate the SMD with the normal distribution having identical
mean and covariance.

A modified algorithm can be described as follows. 1) All mixing parameters
are updated by (15). 2) Parameters of class-conditional distributions are up-
dated by (17) and (18). 3) Parameters of the mixel distributions are updated
according to the theoretical moments (6) and (7) with updated parameters ob-
tained above. Note that this algorithm is not just for increasing the number of
normal distributions. Parameters pps, X'ps are not freely chosen but calculated
so that it best describes the corresponding mixel distribution.

Fig. 2 compares the original and the approximated version of the SMD.
This approximation is reasonable because it is theoretically guaranteed that the
approximated version has the identical mean and covariance to the original ver-
sion. Although some of the information is lost from the original SMD, especially
around regions of skewed peaks, it is shown from experiments (which are not
shown here) that unless Beta distribution parameters are small, the deviation
does not affect fatally in terms of classification performance.

5 Experimental Results

We demonstrate the result of image classification on satellite images. The original
image Fig. 3(c) contains sea and cloud regions, whose meteorological condition
strongly suggests that many mixels should be present on the image. Fig. 3 (a)
and (b) shows the result of mixture density estimation using the EM algorithm.
In terms of goodness-of-fit to the image histogram, (b) is superior to (a). How-
ever please note that this better result is obtained from 20 to 100 times longer
computation time than (a) using the approximated SMD. Here “20 times faster”
may be a little exaggerated comparison because the previous method is not effi-
cient in terms of speed, but the proposed algorithm is in fact sufficiently fast for
practical use like this problem. More importantly, Bayesian borders are almost
same in both cases, which suggests that classification performance is nearly equal
in both cases.

6 Conclusion

Hence the proposed algorithm is much faster and almost equally effective com-
pared to our previous method. Thus we conclude that the approximation of the
SMD using the moments is a promising way to develop our classification algo-
rithm to a more sophisticated algorithm that can be applied to a wide range
of applications. With the proposed classification method, the statistics of the



image can be analyzed more appropriately and accurately under the presence of
mixels. Moreover, the effect of speed-up we showed in this paper becomes more
important when we increase the dimension D to apply our methods to multi-
spectral images. The method itself can be easily extended to multi-spectral case,
so the extension in this direction is practically the most important future work.
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Proofs

Corollary 1.

I'(p) A 0l gt 1t g = oi
T : : == (19)
é/ I/~ T (9) j:l;I# ! v
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{/ T oy | L o e e =05 (20)



Proof. Because f(a; ¢) is a probability density the following relationship holds:

, ILS I(e) _ TIE, I (60)
//Ha¢ Yda = (Z ¢) o) (21)

Then applying the following property of the Gamma function

I'(n+1) =nl(n) (22)

(19) can be calculated as follows:

// (J T )a?i—l+lda: <H%é%r(¢j)>r(¢i+l) gz:H - I'(¢5) (23)

I(p+1) I(p)

Then, by substituting (19) with (23), it is easy to show (19) holds. We can also derive
(20) in the same manner. ]

Proof (of Proposition 1). The mean vector of the standard mixel distribution is the
first order central moment of M (x), and it is calculated from the following formula:

un :[.o/mM(m)dm:[.o/m {4 f(a;d))N(ua,Z‘a)da}da:

It is not possible to directly solve this integral with respect to a. However, if we change
the order of integral between a and x and first integrate (24) with respect to x, this
integral can be simplified as follows:

par = l [ f(aig)ia _/oo/ N (ta, Fa)dz
— [[ @i @da [[(@ = o + 1) N(ha, o) (25)
A — 00

Since the normal distribution is even and (z — pa) is odd around piq,

7/ (@ = pta) N (o, Za)dw = 0 (26)

Then (25) can be further simplified as follows:

a = 4 [ ta ¢)ida /w/ Ha N (fta, Sa)dz = 4 #(@; $)tada

_ i F(‘P) = ad_)j—l @i~ g
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Finally, (27) is integrated with respect to a using (22),

¢1/IJ"L 1 ¢zﬂ'z
u - X (28)
M ; ¥ Zz 1 d)l

Proof (of Proposition 2). To obtain the covariance matrix, the second order moment
around the mean vector, basically the same technique is applied; first integrating the
equation with respect to x, then with respect to a. We solve the following equation:

Zu = [[ faig)ta [[(@ - ura)(e - una) N, B)de (29
A —oo
Applying (26) into (29), we obtain a simplified form:

Xm = //fa¢da//m—ua+ua pa) (@ — pa + pra — prr)’ N(pa, Xo)de

//f 2da+//fa¢ o) (o — paa) " da (30)

Splitting (30) into two terms, the first term can be calculated as follows:

//fa¢2da_//(n H "’11) (éa?&)da

K
;-1 ¢z*1+2
H a; da
// Hz IF

] 1,j#i

1
=———= ) ¢il¢i +1)X; (31)
e(p+1) ;
For the second term, we calculate the following relationship first:
TiL, b _ ( b ) - ( ¢i>
—pp = nia; — = a; — = a; — — | pi
zzl Zz 1 ¢’ zzzl Zl 1 ¢’ Z

Then, using (20), the second term can be simplified as follows:
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Fig.1. The standard mixel distributions for five cases. The left figure illustrates
the shape of the SMD generated from same normal distributions IN(100,900) and
N(400,100), and five different set of Beta distribution parameters shown in the right.
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Fig. 2. Approximation of the SMD. Compare the original SMD (bold dotted line) to
the approximated normal distribution (bold solid line). Beta distribution parameters

for each case are identical to those used in Fig. 1.
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Fig. 3. The result of image classification of satellite imagery. (a) and (b) shows the
results of mixture density estimation, (c) is the original image, and (d) is the result of
classification using (a), where white regions are cloud, black regions are sea and gray
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regions are mixels of both constituents. In (a), ¢1 = ¢2 = 0.5 is fixed.




