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Abstract

Analysis and prediction of the typhoon has been inten-
sively studied by a number of meteorologists because
of the huge impact of the typhoon to the society. We
study the same issue from a different viewpoint — from
an informatics perspective. Our goal is to discover rel-
evant knowledge for typhoon analysis and prediction by
means of various computational tools that have been de-
veloped in the informatics community. Our research
takes advantage of the large collection of typhoon data,
especially the satellite images of the typhoon, with the
application of multimedia data mining methods in the
hope of discovering hidden regularities and anomalies in
the data collection using data mining algorithms such as
principal component analysis, K-means clustering, and
self-organizing map. In this paper, we summarize our
approaches, achievements and open problems, with the
brief introduction of our hand-crafted system, IMET (Im-
age Mining Environment for Typhoon analysis and pre-
diction).

Keywords: Typhoon analysis, Typhoon prediction, In-
formatics perspective, Typhoon data mining, Image min-
ing environment

If there is a hurricane, you always see the signs
of it in the sky for days ahead, if you are at
sea. They do not see it ashore because they
do not know what to look for, he thought. —
Ernest Hemingway, In The Old Man and the
Sea (1952)

1 Introduction

If you are a fisherman, the presence of a typhoon, or a hur-
ricane, is of vital importance — an encounter with even
a small typhoon may lead to a matter of life and death in
the middle of the ocean. Hence a fisherman starts to learn
how to find the signs of a typhoon out of, for example,
the complex patterns of clouds and their movement in the
sky. In other words, a fisherman, or an expert, knows

what to look for in the sky1. On the other hand, a per-
son who lives ashore cannot see those signs even if they
actually appear in the sky.

At the moment, computers, or computer programs, are
like a person who lives ashore — they do not know yet
about what to look for, where to look, and how to look in
the sky. This is a significant loss to the society, since the
accurate analysis and appropriate forecast of the typhoon
has great benefit to the society for the prevention and re-
duction of natural disasters caused by the typhoon. The
goal of our project, Digital Typhoon project, is therefore
to make computers learn how to see the signs in the com-
plex pattern of typhoon clouds. We, however, do not have
to bring computers to the sea in order for them to see the
clouds flying in the sky — instead, we can use satellite
imagery where you can see the entirety of typhoon cloud
patterns from the space.

Problems of the typhoon have been extensively stud-
ied in the meteorology community, but we believe that
the informatics community can also make a substantial
contribution to these problems with the concept of “learn-
ing from data.” We can take advantage of both sophisti-
cated machine learning technology and powerful comput-
ing resources that have made significant advances in the
last decade, and these advances have spurred us to dis-
cover knowledge from very large databases [1]. We have
constructed such very large database of typhoon images,
namely typhoon image collection, which is the compre-
hensive image archive of approximately 34,000 typhoon
images of consistent quality [2]. This image collection
is thoroughly examined by means of various data min-
ing approaches, such as principal component analysis, K-
means clustering and self-organizing map, with the aim
of discovering regularities and anomalies that may be hid-
den in the feature space of typhoon cloud patterns. In this
paper, we summarize the meteorological background be-
hind those challenges, and some of the methods used for
typhoon data mining, and finally introduce our system
called IMET (Image Mining Environment for Typhoon
analysis and prediction).

1Or, only a fisherman who knows what to look for in the sky can
survive.



2 An Informatics Perspective

2.1 Meteorological Background

Because of the huge impact of the typhoon to the soci-
ety, the development of typhoon analysis and prediction
methods have been one of the primary concerns among
meteorologists, and in 1970s, the standard procedure for
typhoon analysis called the Dvorak method [3] was estab-
lished, after nearly 20 years from the first launch of a me-
teorological satellite in 1960. The basis of this method is
the mountains of satellite images we received from many
meteorological satellites, and Dvorak established the em-
pirical method by observing numerous satellite images of
typhoons. This method, since its inception, has been used
in tropical storm analysis centers worldwide.

The Dvorak method is in charge of the interpretation
of typhoon cloud patterns on satellite images among the
whole procedures of typhoon analysis and prediction. It
is essentially a heuristic summarized in the following. Its
main components consist of a set of empirical rules that
relate various cloud features to a set of parameters rep-
resenting the intensity of the typhoon, such as central
pressure and maximum wind. Those empirical rules are
defined for each prototype, incarnated as a sketch draw-
ing that represents a typical cloud pattern in a conceptual
form. In the analysis stage, forecasters search for simi-
lar patterns in the list of sketch drawings and choose the
most similar pattern to the real cloud pattern of interest.
They then apply empirical rules assigned for the chosen
typical pattern, thereby obtaining the intensity estimate
of the typhoon at study. In short, the Dvorak method as-
sists human experts for interpreting satellite images and
making decisions on the intensity of the typhoon.

The result of interpretation according to the Dvorak
method is then fed into a numerical weather prediction
(NWP) system, and finally it computes the future evolu-
tion of synthetic typhoons that live in the lattice of a three
dimensional earth model in a NWP system. This sounds
like a totally coherent system, but in fact the Dvorak
method has several weak points on which the informatics-
based approaches can make an improvement. First, this
analysis method is a collection of empirical rules and
lacks theoretical background or statistical justification.
Second, the potential improvement of the Dvorak method
through learning from historical data has largely been un-
explored. Most of the valuable satellite data are left un-
used mainly because of its volumetric challenges to com-
puting and human resources. Third, the Dvorak method
relies heavily on the pattern recognition of human ex-
perts, and its performance is, for the better or worse,
dependent on the capability of human experts’ pattern
recognition, which is subjective in nature.

The above arguments remind us of a similar framework
in the informatics community such as content-based im-
age retrieval and case-based learning, or we may reach
more principled understanding of the Dvorak method in
the framework of pattern recognition. At the same time,
however, we can see the intrinsic difficulty of this proce-
dure from an informatics viewpoint; for example, the di-

rect comparison of clean sketch drawings with noisy real
cloud patterns requires highly semantic similarity and in-
telligent image analysis. Hence it is better to formulate
those typhoon problems in a way suitable for compu-
tational tools, rather than just simulate the whole pro-
cedures in the same way as meteorology or the Dvorak
method. This is the motivation we start this research —
we challenge typhoon analysis and prediction problems
by taking advantage of tools and ideas developed in the
informatics community.

2.2 Challenges to Informatics

This is a large-scale real world problem with significant
societal impact, and this poses significant challenges to
the informatics community in terms of the following re-
search issues:

1. Spatio-temporal techniques Observation fre-
quency of every hour generates time series satellite
images which are spatio-temporal in nature 2. Tech-
niques for nearly free-form patterns with complex
spatio-temporal dynamics are relatively unexplored
areas of research, see for example [4].

2. Robust techniques Techniques should be robust
enough to deal with every typhoon cloud pattern
that could be generated according to the physical
laws of the atmosphere. They should also be robust
against the complexity of the problem such as com-
putational complexity.

3. Discovery techniques The amount of data we re-
ceive from satellites is literally explosive because
of the recent trends toward more and more sensors
with higher and higher spatial, temporal, and band-
width resolution. This results in satellite data be-
yond our processing capabilities, hence an important
challenge is to develop powerful techniques that di-
gest such large amount of data and uncover hidden
information in the dataset.

Solutions to these challenges may lead to new robust
spatio-temporal discovery techniques with possible ap-
plications in other domains. We do concentrate on this
specific domain and build a set of tools effective for this
application, but at the same time, we do not make our
tools overfit to this application, and try to generalize our
tools so that they are applicable to other domains.

2.3 Knowledge-Based Approaches

To the author’s knowledge, this is the first attempt from
the informatics community toward the comprehensive
study of the typhoon. Meteorology in general, however,
is not a new application area for the informatics commu-
nity. In fact, the application of artificial intelligence to the
meteorology domain has once flourished in 1980s, when
knowledge-based expert systems were in vogue.

2Typhoon images could be transformed as volume-like three-
dimensional data by estimating the height of clouds.



Table 1: Comparison of our approach with other approaches in terms of models.
Approaches Models

Meteorology-based approaches Models of the world (physical processes)
Knowledge-based approaches Models of the expert (cognitive processes)
Our approach Models of the data (data generating processes)

One example is a comparative study of artificial in-
telligence (AI) systems in terms of forecasting severe
weather performed during the summer of 1989 [5]. Six
systems participated; three traditional expert systems, a
hybrid system including a linear model augmented by a
small expert system, an analogue-based system, and a
system developed using methods from the cognitive sci-
ence/judgment analysis tradition. According to the au-
thors, however, “this forecast task turned out to be more
difficult than we anticipated; none of the systems pro-
duced particularly skillful forecasts.” Following these
unsatisfactory results, recent research found its way to an
assistance to experts; for example a system prototype for
a tropical cyclone track forecast [6] provides a computer
tool for assisting experts by arranging existing meteoro-
logical knowledge into an easily understandable form.

2.4 Different Modeling Targets

Now we compare a few relevant approaches in Table 1
in terms of the target of modeling in those approaches.
Knowledge-based approaches, as described above, con-
cern the modeling of the cognitive processes behind deci-
sion making by the expert. Their results, however, were
unsatisfactory probably due to the complexity of both
meteorological processes and cognitive processes. On
the other hand, meteorology-based approaches concern
the modeling of physical processes behind meteorologi-
cal phenomena, but their scientific approaches are less ef-
fective for handling uncertain situations when exact phys-
ical models and their simulations are intractable, as is of-
ten the case with the typhoon. An example of a meteo-
rology approach is numerical weather prediction, whose
success depends on both computing power and the syn-
thetic model of the world that takes as many factors as
possible. We point out here two drawbacks in pure mete-
orology approaches: the incompleteness of typhoon mod-
els and the reconstruction of initial conditions.

The first drawback is related to a general attitude that
pure meteorology-based approaches cannot deal with sit-
uations where solid theoretical models are known just in-
completely, because, in meteorology-based approaches,
every model should be related to a theoretical foundation
that describe the physics of the nature. On the other hand,
our informatics approaches generally assume that the true
model of the nature is not known, hence we can learn var-
ious models from the observed data that approximate the
true model of the nature.

Another drawback is related to the reconstruction of
the atmosphere. There are two unfortunate situations in
the typhoon: ground-truth observations are usually sparse
on the ocean, where the typhoon is found most frequently,

and the variability of the atmosphere is usually local-
ized around the center of the typhoon. Generally speak-
ing, the reconstruction of atmospheric conditions from
sparse observation data is an ill-posed problem and re-
quires some regularity conditions for appropriate recon-
struction. However, the smoothness assumption of the at-
mosphere is usually violated around the center of the ty-
phoon, hence the reconstruction of the atmospheric con-
ditions of the typhoon is a very hard task.

This is an important problem since, without the suc-
cessful reconstruction of the atmosphere, we cannot sim-
ulate the actual typhoon found in the atmosphere, even
if we have perfect typhoon models. We may be able to
apply analysis-by-synthesis models to simulate possible
typhoons, but this does not mean that we can deal with
the current typhoon, which is a realization from the space
of possible typhoons. In other words, this problem is
closely related to the problem of assimilation in numer-
ical weather prediction, where the quality of initial con-
ditions affects significantly to the final prediction perfor-
mance of the system, and the setting of initial conditions
require accurate reconstruction of the current atmosphere.
Here we conjecture that our informatics approaches may
give better initial conditions based on the large collection
of historical patterns of typhoon clouds.

2.5 Our Approach : Data mining / KDD

We concern data themselves, or the data generating pro-
cesses (DGP); that is, the modeling of the probabilistic
and statistical properties of the observation data. We learn
from data, not from humans, through the modeling of
DGP in nature instead of the modeling of cognitive pro-
cesses in humans. However, our study is not limited to
the mere simulation or description of the nature. In fact,
our main target is the modeling of DGP that involve both
physical factors in generating the data and human factors
in observing the data, because both physical factors and
human factors serve as prior information for the modeling
of DGP.

Through the modeling of DGP, our final goal is to ex-
tract relevant information from the large collection of ob-
servation data, and derive useful knowledge that extends
existing meteorological domain knowledge, or that re-
veals hidden spatio-temporal regularities and anomalies
of the typhoon yet unknown to meteorologists. In short,
our approach is based on data mining, or knowledge dis-
covery from databases (KDD).

Knowledge discovery from databases concerns knowl-
edge discovery processes applied to databases. KDD
deals with ready data, available in all domains of sci-
ence and in applied domains. Typically, KDD has to deal



Table 2: Relevant research fields for typhoon analysis and prediction.
Image Analysis, Computer
Vision

Image analysis and computer vision is the basic discipline for the extraction of rele-
vant visual features from typhoon images.

Image Database Systems,
Content-Based Image Re-
trieval

Management of the large collection of typhoon images requires image database sys-
tems. The insertion and deletion of data is normally a trivial task because of the
nature of satellite observations, but a support for content-based image retrieval on
image features is the key for instance-based learning.

Pattern Recognition Pattern recognition is the basis for treating a pattern as information. We, in particular,
rely on statistical pattern recognition whose goal is in representing the probability
distribution of the feature space derived from images.

Artificial Intelligence, Cog-
nitive Science

Expert systems were unfortunately ineffective as introduced in Section 2.3, but hu-
man factors cannot be neglected from our project, since, in any case, we should learn
from human experts’ pattern recognition — the only successful system in the world
on typhoon analysis.

Meteorology Meteorology has established powerful techniques for numerical weather prediction,
and quantitative / qualitative knowledge on the physical aspect of the atmosphere.
Nevertheless, meteorological methods for the assimilation of satellite data into the
numerical weather prediction system are still in their infancy.

Physics, Fluid Dynamics,
Chaos

The dynamics of the atmosphere can be well described by a set of physical laws,
and fluid dynamics play an important role in this framework. However, we should
always pay attention to the concept of chaos, which is an indispensable concept when
predictability is concerned.

with inconclusive data, noisy data, and sparse data. Data
mining indicates the application of low level data mining
methods under human control, where data mining meth-
ods are algorithms designed to analyze data, or to extract
patterns in specific categories [1]. This paper summarizes
our current exploratory effort in search of effective data
mining / KDD methods and algorithms for this particular
application, the typhoon image collection.

Other recent informatics-based approaches on the ty-
phoon (hurricane) include [7, 8] and several others. Those
references discuss the application of active contour mod-
els, optical flow, neural networks and fuzzy logic to the
analysis of the typhoon. The most significant difference
between our research and those researches, however, is
that our research is based on the consistent and compre-
hensive large data collection of typhoon satellite images.
In contrast, their standpoint is the application of particu-
lar informatics methods to the meteorology domain based
on miniature datasets; hence their impact on meteorology
seems to be limited. Other research fields relevant to ty-
phoon problems are summarized in Table 2.

2.6 Discovery of the Signs

Normally the numerical weather prediction system pro-
duces relatively good prediction performance because
simple extrapolation is good enough for typhoons that
strengthen or weaken slowly. In some situation, however,
this scheme cannot provide good forecast because of sud-
den changes of the typhoon. To name a few:

1. Sudden and rapid intensification,

2. Irregular or random movement,

3. Typhoon formation or cyclogenesis,

may be the representative cases of sudden changes of the
typhoon. In fact, meteorologists have neither solid under-
standing nor good prediction performance for these phe-
nomena. This situation, in turn, indicates a possibility
that informatics approaches may be able to make a con-
tribution to these problems with a different viewpoint.

Thus we are interested in difficult problems that have
not been answered by the meteorology community. Our
goals are not in improving overall prediction performance
but in discovering the signs in cloud patterns that predate
the occurrence of such rare phenomena. Our goal is to
see those signs in the spatio-temporal features of typhoon
image sequences.

3 Typhoon Image Collection

At the moment, the typhoon image collection archives
more than 34,000 well-framed typhoon images as sum-
marized in Table 3. Here the term well-framed means:
(1) The center of the typhoon is always registered with
the center of the image. (2) The image captures most of
the typhoon cloud system with the minimal effect from
distortion in shape and size. The typhoon center is de-
termined from the best track dataset that will be intro-
duced later. Thus the data collection as a whole pro-
vides a medium-sized, richly-variational, and carefully-
preprocessed scientific data collection with real applica-
tions. Hence it can be used as an interesting large-scale
testbed for spatio-temporal data mining.

Our collection is comparable in size to similar hurri-
cane archives under development at NESDIS/CIRA (Na-
tional Environmental Satellite Data and Information Ser-
vice / Cooperative Institute for Research in the Atmo-
sphere) in USA [9]. The collection consists of 40,000+



Table 3: The current status of the typhoon image collection.
Basin Northern Hemisphere Southern Hemisphere

Best Track
Name of agency Japan Meteorology Agency (JMA) Australian Bureau of Meteorology (BOM)
Latitudinal Domain 0◦N ∼ ∼ 0◦S
Longitudinal Domain 100◦E ∼ 180◦E 90◦E ∼ 170◦E

Typhoon Image Collection
Typhoon seasons 6 Seasons (1995–2000) 5 Seasons (1995–2000)
Number of sequences 136 62
Number of images 24,500 9,400
Images per sequence 53 ∼ 433 25 ∼ 480
Observation frequency 1 hour 1 hour

images for tropical cyclones in the Atlantic and the east-
ern Pacific for the period 1996-2001. Their background
is in meteorology, but they point out that, even in the me-
teorology community, there have been few quantitative
applications of satellite imagery for investigations of in-
tensity, structure, and motion of the hurricane, particu-
larly with large data samples. Thus our research shares
some motivations with their research, but they are con-
cerned mainly with the analysis of the hurricane archive
by traditional statistical analyses.

4 Typhoon Data Mining

4.1 Categorization of Data Mining

Typhoon data mining we deal with in this paper is a data
mining for a scientific domain on a meteorological appli-
cation in the form of image /multimedia data with spatio-
temporal properties. Hence many types of data mining
algorithms can be applied to this data collection, and we
may need an extensive and comprehensive study to deter-
mine which algorithms work best for this particular ap-
plication. To review various data mining algorithms, we
classify them into three categories: spatial data mining,
temporal data mining, and spatio-temporal data mining.

Spatial data mining deals with the two-dimensional
distribution of typhoon cloud patterns, but note here that
a feature space for two dimensional spatial patterns has,
in general, much higher dimensions than two. Tempo-
ral data mining, on the other hand, focuses on the tem-
poral dynamics of typhoon cloud patterns and involves
the modeling of the life cycle of the typhoon. Relatively
speaking, spatial data mining is more concerned with ty-
phoon analysis, while temporal data mining is more con-
cerned with typhoon prediction. Spatio-temporal data
mining integrates both types of data mining, and there-
fore should be most powerful, but we are yet to develop
or test algorithms of this category because of the com-
plexity of the data collection and algorithms.

Toward the mathematical models of spatial patterns
of the typhoon, we purse two approaches, namely
component-based and shape-based representation. First,
in component-based representation, we investigate an ap-
proach that represents typhoon cloud patterns with the

weighted combination of basic components. Here a com-
ponent represents the distribution of clouds which is char-
acteristic for the dataset at study. This approach does not
require the segmentation of an image, hence this is ro-
bust but still powerful. We begin with PCA (principal
component analysis), which is an orthodox mathematical
method for the efficient reduction of dimensionality while
retaining maximum variability in the dataset. The appli-
cations of PCA to image datasets include face recognition
[10] and remote sensing images [11], and in the context
of meteorology, PCA is often used with the name EOF
(empirical orthogonal function) [12].

On the other hand, in shape-based approaches, we ex-
plicitly represent cloud patterns with mathematical shape
models. An example of this approach is a shape decom-
position method for representing typhoon cloud patterns
with a set of ellipses [15]. Here an ellipse is used as a
basic component because an ellipse and a spiral corre-
sponds to meteorologically meaningful parts of the ty-
phoon, cloud clusters and spiral rainbands, respectively.
Thus the explicit representation of those elements leads
to effective image features for content-based image re-
trieval. More principled approaches to shape-based rep-
resentation include the probabilistic model of shape, see
[4]. in data mining.

4.2 Dimensionality Reduction

The application of PCA has two purposes: namely the ex-
traction of components and the reduction of dimensional-
ity. The first purpose corresponds to extracting eigenvec-
tors that represent maximum variability contained in the
dataset, and these eigenvectors are often called “eigen-
X” depending on the application. In our application, an
eigenvector may be called an eigen-typhoon. Figure 1
represents eigen-typhoons for the northern and the south-
ern hemisphere, with the average typhoon and the vari-
ance typhoon. The first principal eigen-typhoon repre-
sents the difference of cloud fraction between the north-
ern and the southern part of the image, or the latitudinal
structure of the typhoon. Eigen-typhoons with smaller
eigenvalues represent spiral components that look like
rainbands. Thus these images represent the typical distri-
butions of typhoon cloud patterns. Next the lower panels
of Figure 1 represent the cumulative proportion of eigen-
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Figure 1: The eigenvectors of typhoon cloud patterns, or eigen-typhoons, for the northern and the southern hemisphere.
From upper-left corner: the mean image, the variance image, and eigenpictures from the 1st to the 22th. The cumulative
proportion is also illustrated in the bottom panels.

values. About 75% of the variability contained in the
dataset can be represented with only an 83 dimensional
vector for the northern hemisphere out of a 64×64 = 4096
dimensional vector. The same threshold is 91 for the
southern hemisphere.

4.3 Projection into Low Dimensions

The intuitive visualization of a high dimensional feature
space can be obtained by projection. Linear projection
methods simply transform a data point in a high dimen-
sional feature space into a lower dimensional latent space
with a linear projection matrix, and nonlinear projection
methods, including clustering approaches as discussed in
the next subsections, may provide more compact repre-
sentation. We first visualize the feature space with prin-
cipal components that we derived in the previous subsec-
tion. Figure 2 illustrates the projection of data points into
two dimensional spaces, whose axes represent the first
and the second principal components. In these spaces,
grid points are chosen with uniform intervals along each
axis, and those points are then projected back to the orig-
inal high-dimensional space using a Moore-Penrose gen-
eralized inverse matrix. Then the nearest image to each
grid point is visualized on the two dimensional array of
grid points as in Figure 2. These figures suggest the
implication of principal components: the first principal
component represents the latitudinal structure, while the
second principal component is more closely related to the
orientation of the major cloud region. We can test other
linear projection matrices, and in fact, even a randomly

chosen linear projection matrix results in a two dimen-
sional visualization that shows the spatial distribution of
cloud patterns. Hence, a potential research area is to find
an interesting projection matrix, or projection pursuit.

4.4 Discovering Typical Patterns

Clustering procedures aim at yielding a data description
in terms of clusters or groups of data points that possess
strong internal similarities [13]. For the typhoon image
collection, we expect that clustering procedures may pro-
duce the intuitive summarization of typhoon cloud pat-
terns that can be used as the catalog of typhoon images.
If we can find a set of clusters that represent typical pat-
terns of the typhoon, we can categorize complex cloud
patterns into several representative patterns, thereby char-
acterize them with a set of basic patterns. The Dvorak
method, introduced in Section 2.1, did this task manu-
ally and selected typical cloud patterns embodied from
the long experience of analysts. In contrast, we do this
task automatically.

The basic non-hierarchical clustering procedure is the
K-means clustering, and the result of clustering is illus-
trated in Figure 3. In this experiment, the number of clus-
ters is fixed to 100, and clusters obtained through exper-
iments are shown in no particular order. Those images
can be considered as representative patterns, and many
types of shape are visualized together on a two dimen-
sional space. From another viewpoint, this is the non-
linear projection of the high dimensional feature space.
Hence it is a concise visualization, but it is still not an



(a) PCA 1-2 (N.H.) (b) PCA 3-4 (N.H.) (c) PCA 1-2 (S.H.)

Figure 2: Projections of the feature space into two dimensional space spanned by leading principal components. Hori-
zontal and vertical axis represents leading principal components as specified in the caption below the panels, and N.H.
and S.H. represents the northern hemisphere and the southern hemisphere, respectively.

intuitive visualization for humans due to the lack of or-
dering between clusters.

In this sense, better representation in terms of the or-
dering of clusters can be obtained through the SOM clus-
tering. It summarizes high dimensional data vectors with
a set of reference vectors having a topological organiza-
tion on a (usually) two-dimensional lattice. The detail of
the algorithm is found in many publications [14], so we
only describe some settings we use for the basic SOM.
The array of neurons is configured on a square lattice of
either the lattice or the torus topology. Topological neigh-
borhood is defined in reference to chess-board distance on
a square lattice, and learning rate factor is proportional to
the inverse of the number of steps with some minimum
limit. Reference vectors are randomly initialized.

Figure 4 (a) and (b) illustrate results of the SOM clus-
tering. They give an improved visualization with ap-
parent spatial ordering. These clustering methods can
thus visualize the high dimensional feature space of ty-
phoon cloud patterns in a “birds-eye-view” representa-
tion, which is effective for understanding the overall dis-
tribution at a glance. Thus the ordering of typhoon cloud
patterns attained by the SOM gives a unique insight into
the nature of typhoon cloud patterns.

4.5 Temporal Typhoon Data Mining

We next consider the modeling of temporal aspect of ty-
phoon cloud patterns. The most intuitive approach may
be to learn from history or to apply case-based learn-
ing. Here, case-based learning represents knowledge in
terms of specific cases or experiences and relies on flex-
ible matching methods to retrieve these cases and apply
them to new situations [16]. Based on this concept, we
can imagine a typhoon prediction scenario by case-based
learning:

1. We first create the well-framed image of the typhoon
at study, and use this image as the query example to
the typhoon image database.

Figure 3: K-means clustering of typhoon cloud patterns.
Clusters are visualized in no particular order.

2. The typhoon image database performs a similarity-
based image retrieval and returns a list of similar im-
ages found in the past.

3. We then refer to the evolution of past similar ty-
phoon sequences, and predict the typhoon at study
based on some inference on the ensemble of past
similar cases.

This scenario might seem to be reasonable, but, in re-
ality, this scenario is challenging from both a practical
and a theoretical viewpoint. First, this scenario is prac-
tically challenging because similarity between cloud pat-
terns involves semantic similarity such as the presence of
the eye. Second, this scenario is theoretically challenging
because typhoon prediction, or the prediction of atmo-
spheric events in general, cannot escape from the funda-
mental issues of predictability.



(a) SOM on 10 × 10 nodes (b) SOM on 50 × 50 nodes

Figure 4: Clustering of typhoon cloud patterns using the SOM clustering.

The issue of predictability, or short-term predictabil-
ity and long-term unpredictability, focuses on the nonlin-
ear dynamical processes of the atmosphere. This issue
in the context of case-based prediction of atmospheric
situation was in fact studied more than 30 years ago by
one meteorologist, who is well known for his discovery
of chaos, whose deep insight finally uncovered the un-
predictable nature of the atmosphere. In his pioneering
work [17, 18], he tried to find similar weather situations
(analogues) in terms of the pressure pattern of the upper
troposphere obtained from historical weather data in the
hope of utilizing historical data for the prediction of the
current weather. However, the result was disappointing.
He found that similar weather situations rapidly lead to
dissimilar situations and he insisted that there were in-
deed no truly good analogues. His opinion is that in prac-
tice case-based prediction might be expected to fail. Af-
terwards, similar findings have been repeatedly reported
in the meteorology community. This pessimistic outlook
on case-based prediction could be more optimistic with
powerful typhoon models and associated similarity met-
ric that focuses on truly relevant image features.

5 IMET Overview

5.1 System Architecture

Our arguments so far indicate that typhoon problems
are highly complex problems, and our data mining ap-
proaches are yet to make a substantial contribution to
these problems. However, more immediate contribu-
tions can be made through the construction of an intel-
ligent information system for the typhoon image collec-
tion, where the informatics-based approach can naturally
play an important role. We therefore build the system that
we call IMET (Image Mining Environment for Typhoon

Web Client

HTML

HTML

Web Server

XML

XML
Feature Space Explorer

Relational Database Server

Query
Formulation

XSL Transform

Figure 5: Distributed system architecture of IMET.

analysis and prediction), which is designed for the intelli-
gent and efficient searching and browsing of the typhoon
image collection.

Figure 5 illustrates the overall architecture of IMET.
The system consists of three main components: Web
browser clients as the user interface, the Web servers
which may act as hierarchical meta servers, and back-
end database servers where typhoon data are actually
archived. Moreover, those components may be dis-
tributed over the network to allow distributed database
systems, which is often the case with satellite data
archives. At the moment, we have two types of backend
database servers, namely relational database management
systems (RDBMS) and our hand-crafted image search en-
gine called FSE (Feature Space Explorer). For this archi-
tecture, we need to prepare two types of languages:

1. Query language Describe a query from clients or
Web servers to backend database servers.

2. Definition language Describe the contents of data
archived in backend database servers.

The creation of such languages has been an active area
of research, and there have been numerous proposals for
new languages that are designed for specific purposes. A



Query specification

1. A single query example is chosen randomly from Typhoon 9903, and images that belong to this typhoon sequence is
filtered out from subsequent tasks.

2. Images in the database are grouped by the name of typhoon sequences. Distance to the query example is calculated for
each image, and images in each group are then sorted by distance in ascending order.

3. Fetch at most 2 similar images from each group. Those images are collected into the parent group, and again sorted by
distance in ascending order. Finally top 5 images are fetched from the parent group, resulted in 5 most similar images in
which at maximum 2 images are fetched from one typhoon sequence.

4. Return the list of similar images with the name of the typhoon sequence, the name of the image, and distance between the
query example and each image, and the query example of this task.

XML encoding of a query XML encoding of a result
<?xml version="1.0" encoding="UTF-8"?>

<envelope>

<header>

<server port="59300">localhost</server>

<session user="kitamoto" id="1">

<transaction>1</transaction>

</session>

</header>

<body>

<query>

<task>

<example type="single">

<constant select="folder">9903</constant>

<dynamic select="name">@random</dynamic>

</example>

</task>

<where>

<filter select="folder" type="equals" not="1">@example</filter>

</where>

<sort-by order="ascending">value</sort-by>

<fetch>

<from>0</from>

<size>5</size>

</fetch>

<return>

<select>folder</select>

<select>name</select>

<select>value</select>

<select>example</select>

</return>

<group-by>

<select>folder</select>

</group-by>

<for-each>

<task>

<let variable="value">

<function target="example">distance</function>

<metric type="euclid" option="squared">

<min>0</min>

<max>30</max>

</metric>

</let>

</task>

<sort-by order="ascending">value</sort-by>

<fetch>

<from>0</from>

<size>2</size>

</fetch>

</for-each>

</query>

</body>

</envelope>

<?xml version="1.0" encoding="UTF-8"?>

<envelope>

<header>

<session user="kitamoto" id="1">

<transaction>1</transaction>

<matching>24300</matching>

<elapsed>0.000000e+00</elapsed>

</session>

</header>

<body>

<example>

<folder>9903</folder>

<name>GMS599060113</name>

</example>

<list number="5">

<item order="0" id="0">

<folder>9902</folder>

<name>GMS599042809</name>

<value>1.962298e+00</value>

</item>

<item order="1" id="1">

<folder>9514</folder>

<name>GMS595091908</name>

<value>3.230482e+00</value>

</item>

<item order="2" id="2">

<folder>9915</folder>

<name>GMS599091606</name>

<value>3.372034e+00</value>

</item>

<item order="3" id="3">

<folder>9509</folder>

<name>GMS595082415</name>

<value>4.487362e+00</value>

</item>

<item order="4" id="4">

<folder>0003</folder>

<name>GMS500070219</name>

<value>5.203874e+00</value>

</item>

</list>

</body>

</envelope>

Figure 6: A query specification, its XML encoding, and a result in XML encoding.

representative example is SQL (Structured Query Lan-
guage), which is the standard query language for RDBMS
and its variants. In terms of multimedia applications,
MRML [19] is proposed as a query language with the
open communication protocol for CBIR in a XML-based
markup language, and MPEG-7 is also proposed as a def-
inition language with a large vocabulary for the descrip-
tion of multimedia contents. Nevertheless, it seems that
we are yet to reach the standard language for multimedia
applications, and this is the motivation that we develop
our hand-crafted prototype languages for the query and
the definition. The advantage of having such hand-crafted
languages is in rapid prototyping of new tasks required
for typhoon data mining. Our intention is not in develop-
ing full-fledged languages with rigorous theoretical foun-
dations. Instead, the design goal of our languages is to
create a handy yet useful languages with maximally or-

thogonalized operators whose combination describe vari-
ous actions needed in IMET.

Figure 6 describes a query specification in the upper
part of the table, and its XML encoding in the left side,
and a result in the right side. As Figure 6 shows, our
query language relies on XML for the syntax of the lan-
guage, and also relies on XQuery (Query Language for
XML), or its full XML-encoded XQueryX (XML Syn-
tax for XQuery), and other XML-related standards for the
semantics of the language. The query in Figure 6 corre-
sponds to a little complex query-by-example similarity-
based retrieval, in which the grouping of data by typhoon
name is contained in a way similar to a sub-query. Once a
query is formulated, we submit this XML message to the
image search engine, FSE, and the engine then returns the
result of the specified task encoded also in XML.



Figure 7: Nearest neighbor searches in IMET.

5.2 Results

IMET supports traditional searching functionality based
on metadata, such as search-by-name, search-by-date,
and search-by-geography. In addition, IMET provides
K-NN (nearest neighbor) similarity-based retrieval with
Euclidean metric to search for similar patterns in the past
as shown in Figure 7. IMET also provides the compari-
son of multiple typhoon sequences mainly for prediction
purposes. Our system IMET is now open to the pub-
lic and can be accessed at the Web site Digital Typhoon
with the URL http://www.digital-typhoon.org/ so that in-
terested readers can explore the typhoon image collection
and the IMET system.

6 Conclusion

We introduced our research on typhoon analysis and pre-
diction from an informatics perspective. Our principle is
data mining and case-based learning, and we showed sev-
eral approaches that we applied to the large collection of
typhoon images. The ideas behind those approaches are
to study the regularities and anomalies of typhoon cloud
patterns in the feature space through exploiting our prin-
ciple — learning from data. The results in this paper are
in the preliminary stages in the sense that we are yet to de-
rive some definitive knowledge useful for typhoon anal-
ysis and prediction. However, we are accumulating our
experience with typhoon images through our developed
system IMET that we briefly introduced in the last part
of this paper. We are planning to implement more power-
ful learning technology, and more effective search engine
with an efficient query language.
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