ミクセルの内部構造を反映する確率モデルを用いた画像分類法

This paper proposes new ideas for the classification of images with the presence of mixels, or mixed pixels. Based on the internal structure of mixels, we first propose a probabilistic model called area proportion density, and we demonstrate that Beta distribution is an appropriate model for this density. Next, based on the linear model of a mixel, we derive another probabilistic model called mixel density. This model is then incorporated into the mixture density model that describes the image histogram and we suggest that the peculiar flat shape of this density effectively models long-tail image histograms. Finally we present experiments on satellite imagery, and the goodness-of-fit of the proposed models is evaluated from the viewpoint of information criterion.

文献情報

北本 朝展, 高木 幹雄, "ミクセルの内部構造を反映する確率モデルを用いた画像分類法", 画像の認識・理解シンポジウム (MIRU'98), Vol. I, pp. 87-92, 1998年07月

BibTeX フォーマット

@InProceedings{ kt:miru98,
	author = {北本 朝展 and 高木 幹雄},
	title = {ミクセルの内部構造を反映する確率モデルを用いた画像分類法},
	booktitle = {画像の認識・理解シンポジウム (MIRU'98)},
        volume = {I},
	pages = {87-92},
	year = 1998,
	month = 07,
	note = {},
}

関連資料・関連ウェブサイト

サイト内関連ページ

| リンク 1 | リンク 2 |